IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp19-23.html
   My bibliography  Save this article

Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin

Author

Listed:
  • Doyle, Aidan M.
  • Albayati, Talib M.
  • Abbas, Ammar S.
  • Alismaeel, Ziad T.

Abstract

Zeolite Y, with a Si/Al ratio 3.1, was prepared using Iraqi kaolin and tested as a catalyst in the liquid-phase esterification of oleic acid (a simulated free fatty acid frequently used as a model reaction for biodiesel production). XRD confirmed the presence of the characteristic faujasite structure of zeolite Y, and further analysis was conducted using BET adsorption, FTIR spectroscopy, XRF, DLS particle size and SEM. A range of experimental conditions were employed to study the reaction; alcohol/oleic acid molar ratio, temperature, and catalyst mass loading. The optimum conditions for the reaction were observed at 70 °C, 5 wt% catalyst loading and 6:1 ethanol to oleic acid molar ratio. The oleic acid conversion using the zeolite prepared from kaolin was 85% after 60 min, while the corresponding value for a commercial sample of HY zeolite was 76%. Our findings show that low Si/Al ratio zeolite Y is a suitable catalyst for esterification, which is in contrast to the widespread view of the unsuitability of zeolites, in general, for such applications.

Suggested Citation

  • Doyle, Aidan M. & Albayati, Talib M. & Abbas, Ammar S. & Alismaeel, Ziad T., 2016. "Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin," Renewable Energy, Elsevier, vol. 97(C), pages 19-23.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:19-23
    DOI: 10.1016/j.renene.2016.05.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Linye & Xin, Zongwu & Liu, Zihan & Wei, Guangtao & Li, Zhongmin & Ou, Yuning, 2020. "Mechanistic study of the catalytic transfer hydrogenation of biodiesel catalyzed by Raney-Ni under microwave heating," Renewable Energy, Elsevier, vol. 147(P1), pages 695-704.
    2. Abukhadra, Mostafa R. & Salam, Mohamed Abdel & Ibrahim, Sherouk M., 2019. "Insight into the catalytic conversion of palm oil into biodiesel using Na+/K+ trapped muscovite/phillipsite composite as a novel catalyst: Effect of ultrasonic irradiation and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Kuljiraseth, Jirayu & Kumpradit, Thanakorn & Leungcharoenwattana, Tuangrat & Poo-arporn, Yingyot & Jitkarnka, Sirirat, 2020. "Integrated glycerol- and ethanol-based chemical synthesis routes using Cu–Mg–Al LDH-derived catalysts without external hydrogen: Intervention of bio-ethanol co-fed with glycerol," Renewable Energy, Elsevier, vol. 156(C), pages 975-985.
    4. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    5. Laskar, Ikbal Bahar & Gupta, Rajat & Chatterjee, Sushovan & Vanlalveni, Chhangte & Rokhum, Lalthazuala, 2020. "Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature," Renewable Energy, Elsevier, vol. 161(C), pages 207-220.
    6. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    7. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    8. Dahdah, Eliane & Estephane, Jane & Haydar, Reem & Youssef, Yara & El Khoury, Bilal & Gennequin, Cedric & Aboukaïs, Antoine & Abi-Aad, Edmond & Aouad, Samer, 2020. "Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment," Renewable Energy, Elsevier, vol. 146(C), pages 1242-1248.
    9. Hernández-Montelongo, Rosaura & García-Sandoval, Juan Paulo & González-Álvarez, Alejandro & Dochain, Denis & Aguilar-Garnica, Efrén, 2018. "Biodiesel production in a continuous packed bed reactor with recycle: A modeling approach for an esterification system," Renewable Energy, Elsevier, vol. 116(PA), pages 857-865.
    10. Gomes, Glaucio J. & Costa, Michelle Budke & Bittencourt, Paulo R.S. & Zalazar, María Fernanda & Arroyo, Pedro A., 2021. "Catalytic improvement of biomass conversion: Effect of adding mesoporosity on MOR zeolite for esterification with oleic acid," Renewable Energy, Elsevier, vol. 178(C), pages 1-12.
    11. Zimmerman, William B. & Kokoo, Rungrote, 2018. "Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation," Applied Energy, Elsevier, vol. 221(C), pages 28-40.
    12. Daniel Carreira Batalha & Márcio José da Silva, 2021. "Biodiesel Production over Niobium-Containing Catalysts: A Review," Energies, MDPI, vol. 14(17), pages 1-33, September.
    13. Mowla, Omid & Kennedy, Eric & Stockenhuber, Michael, 2019. "Mass transfer and kinetic study on BEA zeolite-catalysed oil hydroesterification," Renewable Energy, Elsevier, vol. 135(C), pages 417-425.
    14. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    15. Rade, Letícia L. & Lemos, Caroline O.T. & Barrozo, Marcos Antônio S. & Ribas, Rogério M. & Monteiro, Robson S. & Hori, Carla E., 2018. "Optimization of continuous esterification of oleic acid with ethanol over niobic acid," Renewable Energy, Elsevier, vol. 115(C), pages 208-216.
    16. Resende, K.A. & de Souza, P.M. & Noronha, F.B. & Hori, C.E., 2019. "Thermodynamic analysis of phenol hydrodeoxygenation reaction system in gas phase," Renewable Energy, Elsevier, vol. 136(C), pages 365-372.
    17. de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.
    18. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:19-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.