IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp307-317.html
   My bibliography  Save this article

An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation

Author

Listed:
  • Akhyani, Mahmood
  • Chegini, Vahid
  • Aliakbari Bidokhti, Abbasali

Abstract

Having more than 2000 km tidal coastline, it's expected that Iran could exploit marine renewable energies. Furthermore, marginal countries around these seas are going to develop their energy resources and marine current energy can be a reliable choice. So, the results of a three dimensional numerical model for the study of circulation in the Persian Gulf and the Gulf of Oman, have been used to assess the power density of ocean currents in these prominent water basins. The calculations are performed regarding converter's dimension and accessibility of the generated power. The results show that the current energy, in the upper 50 m layer increases in two periods of the year, late winter to early spring and late summer to early autumn. It can be asserted that the current energy in the study area increases during monsoon periods. According to the model results, the marine current energy in the Persian Gulf and the Gulf of Oman is rather substantial; but it should wait for harnessing as more efficient power conversion systems are available.

Suggested Citation

  • Akhyani, Mahmood & Chegini, Vahid & Aliakbari Bidokhti, Abbasali, 2015. "An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation," Renewable Energy, Elsevier, vol. 74(C), pages 307-317.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:307-317
    DOI: 10.1016/j.renene.2014.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114004741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    2. Alamian, Rezvan & Shafaghat, Rouzbeh & Miri, S. Jalal & Yazdanshenas, Nima & Shakeri, Mostafa, 2014. "Evaluation of technologies for harvesting wave energy in Caspian Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 468-476.
    3. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    4. Abbaspour, M. & Rahimi, R., 2011. "Iran atlas of offshore renewable energies," Renewable Energy, Elsevier, vol. 36(1), pages 388-398.
    5. Bahaj, A.S & Myers, L.E, 2003. "Fundamentals applicable to the utilisation of marine current turbines for energy production," Renewable Energy, Elsevier, vol. 28(14), pages 2205-2211.
    6. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    7. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    2. Alamian, Rezvan & Shafaghat, Rouzbeh & Amiri, Hoseyn A. & Shadloo, Mostafa Safdari, 2020. "Experimental assessment of a 100 W prototype horizontal axis tidal turbine by towing tank tests," Renewable Energy, Elsevier, vol. 155(C), pages 172-180.
    3. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    4. Khojasteh, Danial & Kamali, Reza, 2016. "Evaluation of wave energy absorption by heaving point absorbers at various hot spots in Iran seas," Energy, Elsevier, vol. 109(C), pages 629-640.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    2. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    3. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal current energy resource assessment in Ireland: Current status and future update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3206-3212, December.
    4. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    5. Ng, Kai-Wern & Lam, Wei-Haur & Pichiah, Saravanan, 2013. "A review on potential applications of carbon nanotubes in marine current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 331-339.
    6. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    7. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    8. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    9. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    10. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    11. Khojasteh, Danial & Kamali, Reza, 2016. "Evaluation of wave energy absorption by heaving point absorbers at various hot spots in Iran seas," Energy, Elsevier, vol. 109(C), pages 629-640.
    12. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    14. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    15. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    16. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    17. Mohammadi, S. & Hassanalian, M. & Arionfard, H. & Bakhtiyarov, S., 2020. "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renewable Energy, Elsevier, vol. 150(C), pages 147-155.
    18. Zhou, Zhibin & Benbouzid, Mohamed & Charpentier, Jean-Frédéric & Scuiller, Franck & Tang, Tianhao, 2017. "Developments in large marine current turbine technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 852-858.
    19. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    20. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:307-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.