IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp617-623.html
   My bibliography  Save this article

Reduction of low grade iron ore pellet using palm kernel shell

Author

Listed:
  • Abd Rashid, Rusila Zamani
  • Mohd. Salleh, Hamzah
  • Ani, Mohd Hanafi
  • Yunus, Nurul Azhani
  • Akiyama, Tomohiro
  • Purwanto, Hadi

Abstract

Effective use of local iron ore and biomass waste as energy and material resources in iron making is an interesting economic prospect since Malaysia imports iron ore to supply its domestic steel consumption while there is an abundance of biomass waste from the palm oil industry. In this work, a composite pellet made of Malaysian iron ore with palm kernel shell (PKS) waste was subjected to reduction tests using an electric tube furnace to investigate the effect of temperature and PKS content on reduction rate. Several iron ore samples taken from different mining locations were subjected to thermal and X-ray diffraction (XRD) analysis. The rate of iron ore reduction increased with increasing temperature up to 900 °C. XRD analysis revealed that the original iron ore mainly contains iron oxide hydrate and was converted into simple hematite after heating and then become magnetite after reduction. The Fe content in the original ore increased almost 12% when 40 wt% of PKS was used. The iron oxide was successfully reduced to magnetite and small amount of wustite when up to 20 wt% of PKS was present in the mixture. Besides, 20 wt% of PKS in reduction process can reduce CO2 emissions by almost 18.69 wt% as well as decrease carbon consumption by 19.78 wt%. Thus, the utilization of biomass as a reducing agent for low grade iron ore reduction is an attractive method for upgrading iron ore as well as reducing CO2 emissions.

Suggested Citation

  • Abd Rashid, Rusila Zamani & Mohd. Salleh, Hamzah & Ani, Mohd Hanafi & Yunus, Nurul Azhani & Akiyama, Tomohiro & Purwanto, Hadi, 2014. "Reduction of low grade iron ore pellet using palm kernel shell," Renewable Energy, Elsevier, vol. 63(C), pages 617-623.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:617-623
    DOI: 10.1016/j.renene.2013.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strezov, Vladimir, 2006. "Iron ore reduction using sawdust: Experimental analysis and kinetic modelling," Renewable Energy, Elsevier, vol. 31(12), pages 1892-1905.
    2. Luo, Siyi & Yi, Cuijie & Zhou, Yangmin, 2011. "Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas," Renewable Energy, Elsevier, vol. 36(12), pages 3332-3336.
    3. W. A. Wan Ab Karim Ghani & Reza Alipour Moghadam & M. A. Mohd Salleh & A. B. Alias, 2009. "Air Gasification of Agricultural Waste in a Fluidized Bed Gasifier: Hydrogen Production Performance," Energies, MDPI, vol. 2(2), pages 1-11, May.
    4. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    5. Chu Ping Lo, 2012. "Clean development mechanism in North‐South trade," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 4(4), pages 485-498, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashokkumar, Veeramuthu & Chen, Wei-Hsin & Kamyab, Hesam & Kumar, Gopalakrishnan & Al-Muhtaseb, Ala'a H. & Ngamcharussrivichai, Chawalit, 2019. "Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe) – Integr," Energy, Elsevier, vol. 189(C).
    2. Chen, Wei-Hsin & Hsu, Chih-Liang & Du, Shan-Wen, 2015. "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace," Energy, Elsevier, vol. 86(C), pages 758-771.
    3. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Yuan, Peng & Shen, Boxiong & Duan, Dongping & Adwek, George & Mei, Xue & Lu, Fengju, 2017. "Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process," Energy, Elsevier, vol. 141(C), pages 472-482.
    5. Wei, Rufei & Zhang, Lingling & Cang, Daqiang & Li, Jiaxin & Li, Xianwei & Xu, Chunbao Charles, 2017. "Current status and potential of biomass utilization in ferrous metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 511-524.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Rufei & Zhang, Lingling & Cang, Daqiang & Li, Jiaxin & Li, Xianwei & Xu, Chunbao Charles, 2017. "Current status and potential of biomass utilization in ferrous metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 511-524.
    2. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Ecaterina Matei & Andra Mihaela Predescu & Anca Andreea Șăulean & Maria Râpă & Mirela Gabriela Sohaciu & George Coman & Andrei-Constantin Berbecaru & Cristian Predescu & Dumitru Vâju & Grigore Vlad, 2022. "Ferrous Industrial Wastes—Valuable Resources for Water and Wastewater Decontamination," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    5. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    6. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    7. Sun, Peiqin & Heng, Mingxing & Sun, Shaohui & Chen, Junwu, 2010. "Direct liquefaction of paulownia in hot compressed water: Influence of catalysts," Energy, Elsevier, vol. 35(12), pages 5421-5429.
    8. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    9. Abidin Kemeç & Ayşenur Tarakcıoglu Altınay, 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
    11. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    12. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    13. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    14. Wen-Tien Tsai, 2019. "Benefit Analysis and Regulatory Actions for Imported Palm Kernel Shell as an Environment-Friendly Energy Source in Taiwan," Resources, MDPI, vol. 8(1), pages 1-10, January.
    15. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    16. Tan, Sie Ting & Hashim, Haslenda & Abdul Rashid, Ahmad H. & Lim, Jeng Shiun & Ho, Wai Shin & Jaafar, Abu Bakar, 2018. "Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue," Energy, Elsevier, vol. 146(C), pages 169-178.
    17. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    18. Wei, Rufei & Feng, Shanghuan & Long, Hongming & Li, Jiaxin & Yuan, Zhongshun & Cang, Daqiang & Xu, Chunbao (Charles), 2017. "Coupled biomass (lignin) gasification and iron ore reduction: A novel approach for biomass conversion and application," Energy, Elsevier, vol. 140(P1), pages 406-414.
    19. Mekhilef, S. & Saidur, R. & Safari, A. & Mustaffa, W.E.S.B., 2011. "Biomass energy in Malaysia: Current state and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3360-3370, September.
    20. Ahmed Zainul Abideen & Veera Pandiyan Kaliani Sundram & Shahryar Sorooshian, 2023. "Scope for Sustainable Development of Small Holder Farmers in the Palm Oil Supply Chain—A Systematic Literature Review and Thematic Scientific Mapping," Logistics, MDPI, vol. 7(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:617-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.