IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp230-237.html
   My bibliography  Save this article

One stone, two birds: Multifunctional hierarchical iron sulfide nanosheet arrays enabling self-powered solar thermoelectric water electrolysis

Author

Listed:
  • Jiang, Jing
  • Chen, Mei
  • Luo, Yang
  • Xu, Ying
  • Ai, Lunhong

Abstract

Solar water splitting is essential for future sustainable hydrogen production using renewable resources, but it remains challenging due to expensive solar generators and inefficient electrocatalysts. Herein, we propose a solar thermoelectric water electrolysis system using multifunctional iron foam-supported iron sulfide nanosheet arrays (FeS/IF) as the photothermal conversion unit in solar thermoelectric generator (STEG) and electroactive electrode in water electrolysis. The photothermal FeS/IF rapidly converts solar light to localized heat, supplying the desirable temperature difference for thermoelectric power generation. Meanwhile, the FeS/IF acts as a bifunctional electrode to effectively catalyze the hydrogen and oxygen evolution reactions in alkaline media. As a prototype integrated system, four series-connected FeS/IF-STEG are applied to self-power water splitting with the production rate of 10.7 and 5.3 μmol h−1 for hydrogen and oxygen, respectively. The present study offers new opportunities for rational design of integrated energy systems from renewable solar to sustainable hydrogen.

Suggested Citation

  • Jiang, Jing & Chen, Mei & Luo, Yang & Xu, Ying & Ai, Lunhong, 2022. "One stone, two birds: Multifunctional hierarchical iron sulfide nanosheet arrays enabling self-powered solar thermoelectric water electrolysis," Renewable Energy, Elsevier, vol. 195(C), pages 230-237.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:230-237
    DOI: 10.1016/j.renene.2022.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    2. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    3. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Zhu, Yizhou & Ma, Benchi & He, Baichuan & Ma, Xinyu & Jing, Dengwei, 2023. "Liquid spherical lens as an effective auxiliary optical unit for CPV/T system with remarkable hydrogen production efficiency," Applied Energy, Elsevier, vol. 334(C).
    6. Keisuke Obata & Michael Schwarze & Tabea A. Thiel & Xinyi Zhang & Babu Radhakrishnan & Ibbi Y. Ahmet & Roel Krol & Reinhard Schomäcker & Fatwa F. Abdi, 2023. "Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    8. Das, Jagat & Sahu, Partha Pratim, 2021. "Water splitting with screw pitched cylindrical electrode and Fe(OH)2 catalyst under 1.4 V," Renewable Energy, Elsevier, vol. 165(P1), pages 525-532.
    9. Sui, Jiyuan & Chen, Zhennan & Wang, Chen & Wang, Yueyang & Liu, Jianhong & Li, Wenjia, 2020. "Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization," Applied Energy, Elsevier, vol. 276(C).
    10. Junfen Li & Hang Guo & Qingpeng Meng & Yuting Wu & Fang Ye & Chongfang Ma, 2020. "Thermodynamic Analysis and Comparison of Two Small-Scale Solar Electrical Power Generation Systems," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    11. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    12. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Ya Liu & Dan Lei & Xiaoqi Guo & Tengfei Ma & Feng Wang & Yubin Chen, 2022. "Scale Effect on Producing Gaseous and Liquid Chemical Fuels via CO 2 Reduction," Energies, MDPI, vol. 15(1), pages 1-9, January.
    14. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Magnin, Jean-Pierre & Deseure, Jonathan, 2019. "Hydrogen generation in a pressurized photobioreactor: Unexpected enhancement of biohydrogen production by the phototrophic bacterium Rhodobacter capsulatus," Applied Energy, Elsevier, vol. 239(C), pages 635-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:230-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.