IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp258-270.html
   My bibliography  Save this article

Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation

Author

Listed:
  • Fakayode, Olugbenga Abiola
  • Akpabli-Tsigbe, Nelson Dzidzorgbe Kwaku
  • Wahia, Hafida
  • Tu, Shanshan
  • Ren, Manni
  • Zhou, Cunshan
  • Ma, Haile

Abstract

Herein, the potential of watermelon rind (WMR) biomass for bio-ethanol production through an integrated bioprocess consisting of combinative sequential ultrasonication and deep eutectic solvent (DES) pretreatments, enzymatic hydrolysis and fermentation was investigated. For the improvement of the efficiency of the WMR conversion into bio-ethanol, the effectiveness of the ultrasonic-assisted DES pretreatment on bio-ethanol yield was studied by optimization, adopting Central Composite Rotatable Design. Glucose was the most dominant sugar in the WMR biomass which enhanced its suitability as cheap carbon source for fermentation process. Maximum glucose and total reducing sugar yields of 60.17% and 83.03% were respectively obtained, and the enzymatic hydrolysis efficiencies ranged from 75.79 to 91.13%. The bio-ethanol yield ranged from 0.276 to 0.458 gg−1 raw WMR, corresponding to fermentation efficiencies of 54.12–89.80%, with the maximum obtained at ultrasonication power 180 W, ultrasonication frequency 40 kHz, ultrasonication time 40 min, DES reaction temperature 120°C and DES reaction time 180 min. Results showed that all the pretreatment factors considered had significant effect on bio-ethanol yield. It was established that combinative pretreatment was efficient for delignification, solubilization and hydrolysis of cellulose and hemicellulose into monomeric sugars by removing hemicellulose from the cellulose fibers. This enhanced fermentable sugar recovery, which consequently increased bio-ethanol yield.

Suggested Citation

  • Fakayode, Olugbenga Abiola & Akpabli-Tsigbe, Nelson Dzidzorgbe Kwaku & Wahia, Hafida & Tu, Shanshan & Ren, Manni & Zhou, Cunshan & Ma, Haile, 2021. "Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation," Renewable Energy, Elsevier, vol. 180(C), pages 258-270.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:258-270
    DOI: 10.1016/j.renene.2021.08.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chohan, Naseeha A. & Aruwajoye, G.S. & Sewsynker-Sukai, Y. & Gueguim Kana, E.B., 2020. "Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment," Renewable Energy, Elsevier, vol. 146(C), pages 1031-1040.
    2. Karimi, Mahmoud & Jenkins, Bryan & Stroeve, Pieter, 2014. "Ultrasound irradiation in the production of ethanol from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 400-421.
    3. Hu, Jun & Cao, Wen & Guo, Liejin, 2021. "Directly convert lignocellulosic biomass to H2 without pretreatment and added cellulase by two-stage fermentation in semi-continuous modes," Renewable Energy, Elsevier, vol. 170(C), pages 866-874.
    4. Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
    5. Fakayode, Olugbenga Abiola & Aboagarib, Elmuez Alsir Ahmed & Yan, Dong & Li, Mo & Wahia, Hafida & Mustapha, Abdullateef Taiye & Zhou, Cunshan & Ma, Haile, 2020. "Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology," Energy, Elsevier, vol. 203(C).
    6. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Peng & Su, Yan & Tang, Wei & Huang, Caoxing & Lai, Chenhuan & Ling, Zhe & Yong, Qiang, 2022. "Revealing enzymatic digestibility of kraft pretreated larch based on a comprehensive analysis of substrate-related factors," Renewable Energy, Elsevier, vol. 199(C), pages 1461-1468.
    2. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Yang, Luan & Zheng, Tianran & Huang, Chen & Yao, Jianfeng, 2022. "Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine," Renewable Energy, Elsevier, vol. 195(C), pages 681-687.
    4. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    5. Yao, Yunlong & Yu, Zhiquan & Lu, Chenyang & Sun, Fanfei & Wang, Yao & Sun, Zhichao & Liu, Yingya & Wang, Anjie, 2022. "Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide," Renewable Energy, Elsevier, vol. 197(C), pages 69-78.
    6. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    4. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    5. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    6. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    7. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Gabriel S. Aruwajoye & Alaika Kassim & Akshay K. Saha & Evariste B. Gueguim Kana, 2020. "Prospects for the Improvement of Bioethanol and Biohydrogen Production from Mixed Starch-Based Agricultural Wastes," Energies, MDPI, vol. 13(24), pages 1-22, December.
    9. Fakayode, Olugbenga Abiola & Aboagarib, Elmuez Alsir Ahmed & Yan, Dong & Li, Mo & Wahia, Hafida & Mustapha, Abdullateef Taiye & Zhou, Cunshan & Ma, Haile, 2020. "Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology," Energy, Elsevier, vol. 203(C).
    10. Gomes, Michelle Garcia & Paranhos, Aline Gomes de Oliveira & Camargos, Adonai Bruneli & Baêta, Bruno Eduardo Lobo & Baffi, Milla Alves & Gurgel, Leandro Vinícius Alves & Pasquini, Daniel, 2022. "Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production," Renewable Energy, Elsevier, vol. 191(C), pages 428-438.
    11. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    12. Sanjeev Kumar Soni & Binny Sharma & Apurav Sharma & Bishakha Thakur & Raman Soni, 2023. "Exploring the Potential of Potato Peels for Bioethanol Production through Various Pretreatment Strategies and an In-House-Produced Multi-Enzyme System," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    13. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    14. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    15. Liu, Yang & Lyu, Yizheng & Tian, Jinping & Zhao, Jialing & Ye, Ning & Zhang, Yongming & Chen, Lujun, 2021. "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    17. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Toshiyuki Takahashi, 2020. "Potential of an Automated- and Image-Based Cell Counter to Accelerate Microalgal Research and Applications," Energies, MDPI, vol. 13(22), pages 1-11, November.
    19. Fozer, Daniel & Kiss, Bernadett & Lorincz, Laszlo & Szekely, Edit & Mizsey, Peter & Nemeth, Aron, 2019. "Improvement of microalgae biomass productivity and subsequent biogas yield of hydrothermal gasification via optimization of illumination," Renewable Energy, Elsevier, vol. 138(C), pages 1262-1272.
    20. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:258-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.