IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v176y2021icp228-236.html
   My bibliography  Save this article

Lanthanum phosphate foam as novel heterogeneous nanocatalyst for biodiesel production from waste cooking oil

Author

Listed:
  • Rezania, Shahabaldin
  • Korrani, Zahra Sotoudehnia
  • Gabris, Mohammad Ali
  • Cho, Jinwoo
  • Yadav, Krishna Kumar
  • Cabral-Pinto, Marina M.S.
  • Alam, Javed
  • Ahamed, Maqusood
  • Nodeh, Hamid Rashidi

Abstract

In this study, the potential of LaPO4 foam as a heterogeneous catalyst to produce biodiesel from highly acidic waste cooking oil (WCO) was investigated. The LaPO4 supported nickel foam was characterized by scanning electron microscopy (SEM), energy dispersive X-ray mapping analysis (EDX), X-ray diffraction, and Fourier transform infrared (FT-IR). In addition, the effect of different parameters such as the molar ratio of feedstock to methanol, contact time and the reaction temperature. Under the study conditions, with methanol to oil molar ratio of 5:1, and a reaction temperature of 90 °C, 91% FAME yield was obtained within 120 min with 2.5 wt % of LaPO4. The obtained results demonstrated that LaPO4 foam can be used effectively as a heterogeneous catalyst with superior catalytic efficiency (>90%) with easy separation and excellent stability.

Suggested Citation

  • Rezania, Shahabaldin & Korrani, Zahra Sotoudehnia & Gabris, Mohammad Ali & Cho, Jinwoo & Yadav, Krishna Kumar & Cabral-Pinto, Marina M.S. & Alam, Javed & Ahamed, Maqusood & Nodeh, Hamid Rashidi, 2021. "Lanthanum phosphate foam as novel heterogeneous nanocatalyst for biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 176(C), pages 228-236.
  • Handle: RePEc:eee:renene:v:176:y:2021:i:c:p:228-236
    DOI: 10.1016/j.renene.2021.05.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rattanaphra, Dussadee & Soodjit, Phansiri & Thanapimmetha, Anusith & Saisriyoot, Maythee & Srinophakun, Penjit, 2019. "Synthesis, characterization and catalytic activity studies of lanthanum oxide from Thai monazite ore for biodiesel production," Renewable Energy, Elsevier, vol. 131(C), pages 1128-1137.
    2. Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
    3. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    4. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maleki, Basir & Esmaeili, Hossein, 2023. "Ultrasound-assisted conversion of waste frying oil into biodiesel using Al-doped ZnO nanocatalyst: Box-Behnken design-based optimization," Renewable Energy, Elsevier, vol. 209(C), pages 10-26.
    2. Atelge, M.R., 2022. "Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1-15.
    3. Zeeshan, Muhammad & Ghazanfar, Sadia & Tariq, Muhammad & Asif, Hafiz Muhammad & Hussain, Ajaz & Usman, Muhamamd & Khan, Muhammad Ali & Mahmood, Khalid & Sirajuddin, Muhammad & Imran, Muhammad, 2023. "Synthesis of novel ternary NiO–CdO-Nd2O3 nanocomposite for biodiesel production," Renewable Energy, Elsevier, vol. 210(C), pages 800-809.
    4. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    5. Panchal, Balaji & Zhu, Zheng & Qin, Shenjun & Chang, Tao & Zhao, Qiaojing & Sun, Yuzhuang & Zhao, Cunliang & Wang, Jinxi & Bian, Kai & Rankhamb, Santosh, 2022. "The current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review," Renewable Energy, Elsevier, vol. 181(C), pages 341-354.
    6. El-sherif, Ahmed A. & Hamad, Amany M. & Shams-Eldin, Engy & Mohamed, Heba Allah Abdelnabi Eid & Ahmed, Asmaa M. & Mohamed, Maha A. & Abdelaziz, Youssef S. & Sayed, Fatma Al-Zahraa & El qassem Mahmoud,, 2023. "Power of recycling waste cooking oil into biodiesel via green CaO-based eggshells/Ag heterogeneous nanocatalyst," Renewable Energy, Elsevier, vol. 202(C), pages 1412-1423.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    2. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.
    3. da Silva, Paula Maria Melo & Gonçalves, Matheus Arrais & da Luz Corrêa, Ana Paula & da Luz, Patrícia Teresa Souza & Zamian, José Roberto & da Rocha Filho, Geraldo Narciso & da Conceição, Leyvison Rafa, 2023. "Preparation and characterization of a novel efficient catalyst based on molybdenum oxide supported over graphene oxide for biodiesel synthesis," Renewable Energy, Elsevier, vol. 211(C), pages 126-139.
    4. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    5. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    6. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    7. Okoye, Patrick U. & Wang, Song & Khanday, Waheed Ahmad & Li, Sanxi & Tang, Tao & Zhang, Linnan, 2020. "Box-Behnken optimization of glycerol transesterification reaction to glycerol carbonate over calcined oil palm fuel ash derived catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 2676-2687.
    8. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    9. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    10. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    11. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    12. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    13. Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
    14. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    15. Zhang-Chun Tang & Yanjun Xia & Qi Xue & Jie Liu, 2018. "A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties," Energies, MDPI, vol. 11(3), pages 1-17, March.
    16. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.
    17. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Ruatpuia, Joseph V.L. & Changmai, Bishwajit & Pathak, Ayush & Alghamdi, Lana A. & Kress, Thomas & Halder, Gopinath & Wheatley, Andrew E.H. & Rokhum, Samuel Lalthazuala, 2023. "Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study," Renewable Energy, Elsevier, vol. 206(C), pages 597-608.
    19. Sulaiman, Nur Fatin & Wan Abu Bakar, Wan Azelee & Toemen, Susilawati & Kamal, Norhasyimah Mohd & Nadarajan, Renugambaal, 2019. "In depth investigation of bi-functional, Cu/Zn/γ-Al2O3 catalyst in biodiesel production from low-grade cooking oil: Optimization using response surface methodology," Renewable Energy, Elsevier, vol. 135(C), pages 408-416.
    20. Rocha, Pablo D. & Oliveira, Leandro S. & Franca, Adriana S., 2019. "Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1710-1716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:176:y:2021:i:c:p:228-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.