IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp1128-1158.html
   My bibliography  Save this article

Investigation of solar collector system with turbulator considering hybrid nanoparticles

Author

Listed:
  • Sheikholeslami, M.
  • Farshad, Seyyed Ali

Abstract

In this article, six-lobed absorber tube equipped with combined turbulators was investigated. To enhance the productivity of solar unit, hybrid nanoparticles were added in to working fluid. Helical coil and twisted tape have been employed together. For evaluating the thermal behavior and exergy loss, average solar flux were imposed in boundary condition. Also, variable heat flux was applied to evaluate the thermal efficiency including air gap for solar system. Homogeneous model for hybrid nanomaterial was utilized and outputs were presented to analyze the impact of changing operating fluid. Selecting six-lobed tube instead of circular tube leads to better cooling performance and lower exergy loss. When Re = 10000, convective coefficient augments about 3% while exergy drop declines about 5.198% with using six-lobed tube. Insertion of twisted tape for lower Re leads to augmentation of h by 1.666% and reduction of exergy drop about 1.828%.To scrutinize the influence of width ratio and (w˜) and revolution number (n˜) for coil insert, exergy drop and friction factor values in form of bar chart were presented. Velocity augments with rise of both factors and impingement of fluid with wall increases which provides higher pressure drop and lower exergy drop. Exergy loss decreases about 8.671% and 6.286% with augment of n˜and w˜when Re = 5000. Owing to nice attributes of hybrid nanofluid, not only convective flow augments but also exergy loss reduces by adding such particles. Dispersing nanoparticles can enhance the convective flow about 9.096% and 8.438% for circular tube and six-lobed tube with turbulator, respectively. Also, exergy loss for six-lobed tube with turbulator reduces about 8.562% with adding hybrid nanomaterial. Replacing, six-lobed tube with turbulator instead of circular tube leads to reduction of exergy drop about 17.907% while convective coefficient augments about 12.719%. Augmenting solar irradiation enhances the thermal efficiency about 180.24% and outlet temperature rises from 293.2 K to 293.36 K when Re = 5000.

Suggested Citation

  • Sheikholeslami, M. & Farshad, Seyyed Ali, 2021. "Investigation of solar collector system with turbulator considering hybrid nanoparticles," Renewable Energy, Elsevier, vol. 171(C), pages 1128-1158.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1128-1158
    DOI: 10.1016/j.renene.2021.02.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leong, K.Y. & Ong, Hwai Chyuan & Amer, N.H. & Norazrina, M.J. & Risby, M.S. & Ku Ahmad, K.Z., 2016. "An overview on current application of nanofluids in solar thermal collector and its challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1092-1105.
    2. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
    3. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
    4. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    5. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Anirudh, K. & Dhinakaran, S., 2020. "Numerical study on performance improvement of a flat-plate solar collector filled with porous foam," Renewable Energy, Elsevier, vol. 147(P1), pages 1704-1717.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youngho Lee & Hyomin Jeong & Yonmo Sung, 2021. "Thermal Absorption Performance Evaluation of Water-Based Nanofluids (CNTs, Cu, and Al 2 O 3 ) for Solar Thermal Harvesting," Energies, MDPI, vol. 14(16), pages 1-12, August.
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    3. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    4. Preeti, & Ojjela, Odelu, 2022. "Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 100-122.
    5. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    6. Hayat, T. & Inayatullah, & Alsaedi, A., 2021. "Development of bioconvection flow of nanomaterial with melting effects," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Zhao, Chen & Xing, Shuang & Liu, Wei & Chen, Ming & Wang, Haijiang, 2021. "Performance and thermal optimization of different length-width ratio for air-cooled open-cathode fuel cell," Renewable Energy, Elsevier, vol. 178(C), pages 1250-1260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    2. Elwekeel, Fifi N.M. & Abdala, Antar M.M., 2023. "Numerical and experimental investigation of the performance of a new circular flat plate collector," Renewable Energy, Elsevier, vol. 209(C), pages 581-590.
    3. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    4. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
    6. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    7. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    8. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    9. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Ma, Ruihua & Ma, Dongyan & Ma, Ruijiang & Long, Enshen, 2022. "Theoretical and experimental analysis of temperature variation of V–Ti black ceramic solar collector," Renewable Energy, Elsevier, vol. 194(C), pages 1153-1162.
    11. Ghasemian, Mehran & Sheikholeslami, M. & Dehghan, Maziar, 2023. "Performance improvement of photovoltaic/thermal systems by using twisted tapes in the coolant tubes with different cross-section patterns," Energy, Elsevier, vol. 279(C).
    12. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    13. Cao, Yan & Hashemian, Mehran & Ayed, Hamdi & Shawabkeh, Ali & Issakhov, Alibek & Wae-hayee, Makatar, 2022. "Design-eligibility study of solar thermal helically coiled heat exchanging system with annular dimples by irreversibility concept," Renewable Energy, Elsevier, vol. 183(C), pages 369-384.
    14. Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
    15. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    16. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    17. Das, Debayan & Lukose, Leo & Basak, Tanmay, 2018. "Role of multiple solar heaters along the walls for the thermal management during natural convection in square and triangular cavities," Renewable Energy, Elsevier, vol. 121(C), pages 205-229.
    18. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    19. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    20. Elguezabal, P. & Lopez, A. & Blanco, J.M. & Chica, J.A., 2020. "CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade," Renewable Energy, Elsevier, vol. 146(C), pages 1766-1780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1128-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.