IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp1373-1385.html
   My bibliography  Save this article

Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts

Author

Listed:
  • Farhan, Ammar A.
  • Issam M.Ali, Aljubury
  • Ahmed, Hamdi E.

Abstract

The present study provides an analytical and numerical investigation of the energy and exergy analysis of a v-corrugated solar air heater (VCSAH) integrated with twisted tape insert (TTI). The TTI is placed in the air passages formed by the absorber and backplates. The effect of design parameters such as twisted tape ratio (Y) and the number of channels (N) on the thermo-hydraulic performance is examined for a wide range of Reynolds number (Re) under realistic weather conditions data. The results reveal that as the Y decreases, the thermo-hydraulic efficiency of VCSAH-TTI is first rises to a specific value of Re to reach the peak value, and then drops down. The optimal number of channels that provides maximum thermo-hydraulic efficiency is N = 5 when the TTI is implemented. The maximum thermal and thermo-hydraulic efficiencies of VCSAH-TTI observed are 17.5 and 17%, respectively, compared to the VCSAH without TTI. Besides, the thermal efficiency is directly proportional to the number of channels. At Re = 10,000, the thermal efficiency is found to be 69.3% and 76.7% for N = 4 and N = 14, respectively. The accumulated useful heat gain of the proposed design is 17% higher than VCSAH without TTI.

Suggested Citation

  • Farhan, Ammar A. & Issam M.Ali, Aljubury & Ahmed, Hamdi E., 2021. "Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts," Renewable Energy, Elsevier, vol. 169(C), pages 1373-1385.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1373-1385
    DOI: 10.1016/j.renene.2021.01.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah & Sözen, Adnan & Gürbüz, Emine Yağız & Şirin, Ceylin & Gungor, Afsin, 2020. "Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications," Renewable Energy, Elsevier, vol. 160(C), pages 67-85.
    3. Priyam, Abhishek & Chand, Prabha, 2018. "Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater," Renewable Energy, Elsevier, vol. 119(C), pages 690-702.
    4. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    5. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    6. Ammari, H.D., 2003. "A mathematical model of thermal performance of a solar air heater with slats," Renewable Energy, Elsevier, vol. 28(10), pages 1597-1615.
    7. Kumar, Anup & Layek, Apurba, 2019. "Nusselt number and friction factor correlation of solar air heater having twisted-rib roughness on absorber plate," Renewable Energy, Elsevier, vol. 130(C), pages 687-699.
    8. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    9. Karim, Md Azharul & Hawlader, M.N.A, 2006. "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, Elsevier, vol. 31(4), pages 452-470.
    10. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    2. Mustafa Alaskari & Arwa M. Kadhim & Ammar A. Farhan & Moustafa Al-Damook & Mansour Al Qubeissi, 2022. "Performance Evaluation of Roughened Solar Air Heaters for Stretched Parameters," Clean Technol., MDPI, vol. 4(2), pages 1-15, June.
    3. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Arunachala, U.C., 2022. "Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 627-641.
    4. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    5. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheikhnejad, Yahya & Gandjalikhan Nassab, Seyed Abdolreza, 2021. "Enhancement of solar chimney performance by passive vortex generator," Renewable Energy, Elsevier, vol. 169(C), pages 437-450.
    2. Benhamza, Abderrahmane & Boubekri, Abdelghani & Atia, Abdelmalek & El Ferouali, Hicham & Hadibi, Tarik & Arıcı, Müslüm & Abdenouri, Naji, 2021. "Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential," Renewable Energy, Elsevier, vol. 169(C), pages 1190-1209.
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    4. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    5. Jihu Lee & Sung-Hun Son & Kibum Kim, 2021. "Eco-Friendly and Economical Solar Heater Design Using Internal Structure and Phase Change Materials," Energies, MDPI, vol. 14(21), pages 1-15, November.
    6. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    7. Afshari, Faraz & Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Şahinkesen, İstemihan & Di Nicola, Giovanni, 2021. "Dehumidification of sewage sludge using quonset solar tunnel dryer: An experimental and numerical approach," Renewable Energy, Elsevier, vol. 171(C), pages 784-798.
    8. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    9. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
    10. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    11. Bezbaruah, Parag Jyoti & Das, Rajat Subhra & Sarkar, Bikash Kumar, 2021. "Experimental and numerical analysis of solar air heater accoutered with modified conical vortex generators in a staggered fashion," Renewable Energy, Elsevier, vol. 180(C), pages 109-131.
    12. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    13. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    14. Tuncer, Azim Doğuş & Khanlari, Ataollah & Sözen, Adnan & Gürbüz, Emine Yağız & Şirin, Ceylin & Gungor, Afsin, 2020. "Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications," Renewable Energy, Elsevier, vol. 160(C), pages 67-85.
    15. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    16. Hassan, Hamdy & Osman, Osman Omran & Abdelmoez, Mahmoud N. & abo-Elfadl, Saleh, 2023. "Energy and exergy evaluation of new design nabla shaped tubular solar air heater (∇ TSAH): Experimental investigation," Energy, Elsevier, vol. 276(C).
    17. Azadani, Leila N. & Gharouni, Nadiya, 2021. "Multi objective optimization of cylindrical shape roughness parameters in a solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 1156-1168.
    18. Afshari, Faraz & Sözen, Adnan & Khanlari, Ataollah & Tuncer, Azim Doğuş & Şirin, Ceylin, 2020. "Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater," Renewable Energy, Elsevier, vol. 158(C), pages 297-310.
    19. Mgbemene, Chigbo & Jacobs, Ifeanyi & Okoani, Anthony & Ononiwu, Ndudim, 2022. "Experimental investigation on the performance of aluminium soda can solar air heater," Renewable Energy, Elsevier, vol. 195(C), pages 182-193.
    20. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1373-1385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.