IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2019-2030.html
   My bibliography  Save this article

Spectral modelling of typhoon winds considering nexus between longitudinal and lateral components

Author

Listed:
  • Tao, Tianyou
  • Shi, Peng
  • Wang, Hao

Abstract

The nexus between the spectra of longitudinal and lateral components is always neglected in the spectral modelling of typhoon winds. With spectral modification to the isotropic turbulence, a general model is developed for longitudinal and lateral spectra of typhoon winds considering their mutual nexus in this paper. Using the measured data of a landfall typhoon, the wind spectra are analyzed with comparisons to some widely utilized empirical formulas, and the adaptability of the general model is discussed. Due to the non-stationarity in the mean wind velocity, overfitting is encountered and the fitted model has large deviations from the measured spectra. Thus, a non-stationary wind velocity model is utilized, and the turbulence is treated in a semi-stationary manner. The general model can well describe the spectra of semi-stationary turbulence, and a unified semi-stationary model that adapts to different cases is then obtained. To further involve the time-varying properties of turbulence, the general model is extended into a time-frequency form to fit the measured evolutionary power spectral density (EPSD). The comparison between measured and fitted EPSDs verifies the effectiveness of the extended model that considers the nexus between longitudinal and lateral components at each frozen time.

Suggested Citation

  • Tao, Tianyou & Shi, Peng & Wang, Hao, 2020. "Spectral modelling of typhoon winds considering nexus between longitudinal and lateral components," Renewable Energy, Elsevier, vol. 162(C), pages 2019-2030.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2019-2030
    DOI: 10.1016/j.renene.2020.09.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031555X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Jaehee & Kim, Bumsuk, 2019. "An analysis of South Korea's energy transition policy with regards to offshore wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 71-84.
    2. Peng Huang & Wen Xie & Ming Gu, 2020. "A comparative study of the wind characteristics of three typhoons based on stationary and nonstationary models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 785-815, April.
    3. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    4. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Heng & Zhang, Shenxi & Cheng, Haozhong & Li, Zheng & Gu, Qingfa & Tian, Xueqin, 2022. "Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators," Renewable Energy, Elsevier, vol. 200(C), pages 303-319.
    2. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
    3. Yanru Wang & Yongguang Li & Qianqian Qi & Chuanxiong Zhang & Xu Wang & Guangyu Fan & Bin Fu, 2022. "Experimental Study of the Fluctuating Wind Characteristics of Typhoon Jangmi Measured at the Top of a Building," Sustainability, MDPI, vol. 14(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
    2. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    4. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    5. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Bahamonde, Manuel Ignacio & Litrán, Salvador P., 2019. "Study of the energy production of a wind turbine in the open sea considering the continuous variations of the atmospheric stability and the sea surface roughness," Renewable Energy, Elsevier, vol. 135(C), pages 163-175.
    7. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    10. Zenteno-Catemaxca, Rolando & Moguel-Castañeda, Jazael G. & Rivera, Victor M. & Puebla, Hector & Hernandez-Martinez, Eliseo, 2021. "Monitoring a chemical reaction using pH measurements: An approach based on multiscale fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    12. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    14. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    16. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Varadharajan Sankaralingam Sriraja Balaguru & Nesamony Jothi Swaroopan & Kannadasan Raju & Mohammed H. Alsharif & Mun-Kyeom Kim, 2021. "Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors," Sustainability, MDPI, vol. 13(4), pages 1-31, February.
    18. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    19. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    20. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2019-2030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.