IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp21-29.html
   My bibliography  Save this article

Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production

Author

Listed:
  • Barua, Visva Bharati
  • Goud, Vaibhav V.
  • Kalamdhad, Ajay S.

Abstract

Biological pretreatment with novel isolated microbial pure culture was utilised to pretreat water hyacinth to enhance its solubilisation followed by biogas production. Lignocellulose degrading bacterial strains isolated from soil (Bordetella muralis VKVVG5) (UN3d2), the gut of silverfish (Citrobacter werkmanii VKVVG4) (SFa2) and millipede (Paenibacillus sp. VKVVG1) (BrB2) were employed to optimise the ideal bacterial strain illustrating accelerated hydrolysis of water hyacinth. Citrobacter werkmanii VKVVG4 pretreatment of water hyacinth with an optimum dosage of 109 CFU/mL and time of 4 days helped in achieving the highest solubilisation of 33.3%. Biochemical methane potential (BMP) test was conducted between untreated and Citrobacter werkmanii VKVVG4 pretreated water hyacinth. Biochemical methane potential (BMP) test of pretreated water hyacinth illustrated faster start up period than the untreated water hyacinth. Citrobacter werkmanii VKVVG4 (SFa2) pretreated water hyacinth illustrated a cumulative biogas production of 3737 ± 21 mL whereas untreated water hyacinth illustrated a cumulative biogas production of 3038 ± 13 mL on the 50th day. Scaled up batch (20 L) study demonstrated a three times increase in the cumulative biogas generation of the microbial pretreated water hyacinth than the untreated water hyacinth.

Suggested Citation

  • Barua, Visva Bharati & Goud, Vaibhav V. & Kalamdhad, Ajay S., 2018. "Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production," Renewable Energy, Elsevier, vol. 126(C), pages 21-29.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:21-29
    DOI: 10.1016/j.renene.2018.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yunqin & Liang, Jiajin & Zeng, Chao & Wang, Dehan & Lin, Huanjia, 2017. "Anaerobic digestion of pulp and paper mill sludge pretreated by microbial consortium OEM1 with simultaneous degradation of lignocellulose and chlorophenols," Renewable Energy, Elsevier, vol. 108(C), pages 108-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    2. Obianuju P. Ilo & Mulala D. Simatele & S’phumelele L. Nkomo & Ntandoyenkosi M. Mkhize & Nagendra G. Prabhu, 2020. "The Benefits of Water Hyacinth ( Eichhornia crassipes ) for Southern Africa: A Review," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    4. Yanjie Zhang & Weiyang Dong & Guokai Yan & Haiyan Wang & Huan Wang & Yang Chang & Shan Yu & Zhaosheng Chu & Yu Ling & Congyu Li, 2022. "Plant Carbon Sources for Denitrification Enhancement and Its Mechanism in Constructed Wetlands: A Review," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    5. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    6. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    7. Adhirashree Vannarath & Arun Kumar Thalla, 2020. "Evaluation, ranking, and selection of pretreatment methods for the conversion of biomass to biogas using multi-criteria decision-making approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 510-525, December.
    8. Patil, Ravichandra & Cimon, Caroline & Eskicioglu, Cigdem & Goud, Vaibhav, 2021. "Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production," Renewable Energy, Elsevier, vol. 179(C), pages 467-474.
    9. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    10. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixit, Mandeep & Gupta, Guddu Kumar & Usmani, Zeba & Sharma, Minaxi & Shukla, Pratyoosh, 2021. "Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: A greener approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    3. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    4. Barua, Visva Bharati & Rathore, Vidhi & Kalamdhad, Ajay S., 2019. "Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment," Renewable Energy, Elsevier, vol. 134(C), pages 103-112.
    5. Ajayi-Banji, A. & Rahman, S., 2022. "A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Sethupathy, A. & Sivashanmugam, P., 2021. "Amelioration of methane production efficiency of paper industry waste sludge through hydrolytic enzymes assisted with poly3hydroxybutyrate," Energy, Elsevier, vol. 214(C).
    7. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:21-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.