IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp647-652.html
   My bibliography  Save this article

The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier

Author

Listed:
  • Kanellis, Michalis
  • de Jong, Minne M.
  • Slooff, Lenneke
  • Debije, Michael G.

Abstract

In this work we describe the relative performance of the largest luminescent solar concentrator (LSC) constructed to date. Comparisons are made for performance of North/South and East/West facing panels during a sunny day. It is shown that the East/West panels display much more varied performance during the day, as the structural elements of the barrier interfere with solar illumination and cause shading, but perform similarly for both front and back illumination conditions. The results of a more extended, 200 day measurement period mirror the results of the single sunny day results. This work demonstrates the importance of frame design to minimize self-shading of the LSC panels.

Suggested Citation

  • Kanellis, Michalis & de Jong, Minne M. & Slooff, Lenneke & Debije, Michael G., 2017. "The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier," Renewable Energy, Elsevier, vol. 103(C), pages 647-652.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:647-652
    DOI: 10.1016/j.renene.2016.10.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Bernardoni & Giulio Mangherini & Marinela Gjestila & Alfredo Andreoli & Donato Vincenzi, 2021. "Performance Optimization of Luminescent Solar Concentrators under Several Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-22, February.
    2. Debije, Michael G. & Tzikas, Chris & Rajkumar, Vikram A. & de Jong, Minne M., 2017. "The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype," Renewable Energy, Elsevier, vol. 113(C), pages 1288-1292.
    3. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    4. Li, Yilin & Sun, Yujian & Zhang, Yongcao, 2020. "Regional measurements to analyze large-area luminescent solar concentrators," Renewable Energy, Elsevier, vol. 160(C), pages 127-135.
    5. Bognár, Ádám & Kusnadi, Suryadi & Slooff, Lenneke H. & Tzikas, Chris & Loonen, Roel C.G.M. & de Jong, Minne M. & Hensen, Jan L.M. & Debije, Michael G., 2020. "The solar noise barrier project 4: Modeling of full-scale luminescent solar concentrator noise barrier panels," Renewable Energy, Elsevier, vol. 151(C), pages 1141-1149.
    6. Ana R. Frias & Marita A. Cardoso & Ana R. N. Bastos & Sandra F. H. Correia & Paulo S. André & Luís D. Carlos & Veronica de Zea Bermudez & Rute A. S. Ferreira, 2019. "Transparent Luminescent Solar Concentrators Using Ln 3+ -Based Ionosilicas Towards Photovoltaic Windows," Energies, MDPI, vol. 12(3), pages 1-11, January.
    7. Zhong, Teng & Zhang, Kai & Chen, Min & Wang, Yijie & Zhu, Rui & Zhang, Zhixin & Zhou, Zixuan & Qian, Zhen & Lv, Guonian & Yan, Jinyue, 2021. "Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery," Renewable Energy, Elsevier, vol. 168(C), pages 181-194.
    8. Bartłomiej Milewicz & Magdalena Bogacka & Krzysztof Pikoń, 2021. "Influence of Solar Concentrator in the Form of Luminescent PMMA on the Performance of a Silicon Cell," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:647-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.