IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006361.html
   My bibliography  Save this article

Flexible modelling of a bivariate degradation process with a shared frailty and an application to fatigue crack data

Author

Listed:
  • Barui, Sandip
  • Mitra, Debanjan
  • Balakrishnan, Narayanaswamy

Abstract

Examples of units with two performance characteristics that degrade over time are ubiquitous in reliability engineering. In this article, we develop a flexible model for bivariate degradation data pertaining to units in which the degradation processes corresponding to the performance characteristics are likely dependent on each other. The proposed model has two features: the degradation processes are marginally modelled by gamma processes, and the dependence between them is modelled by a shared frailty term that is assumed to follow the generalized gamma distribution. We show that this model is far more flexible and efficient than many of the commonly used models for capturing dependence between the performance characteristics. A computational technique for the maximum likelihood estimation, based on Monte Carlo simulation, is developed for the proposed model. Then, the method of estimation is evaluated through an elaborate Monte Carlo simulation study. The joint reliability function of the unit with two performance characteristics and its estimation are also discussed in this general setting. The proposed model is extended to the case of multiple performance characteristics. Finally, a case study is presented in which a real degradation data pertaining to fatigue cracks is analysed through the proposed model to demonstrate its usefulness.

Suggested Citation

  • Barui, Sandip & Mitra, Debanjan & Balakrishnan, Narayanaswamy, 2024. "Flexible modelling of a bivariate degradation process with a shared frailty and an application to fatigue crack data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006361
    DOI: 10.1016/j.ress.2023.109722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Asha & A. Vincent Raja & Nalini Ravishanker, 2018. "Reliability modelling incorporating load share and frailty," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 34(2), pages 206-223, March.
    2. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Almeida, Marco Pollo & Paixão, Rafael S. & Ramos, Pedro L. & Tomazella, Vera & Louzada, Francisco & Ehlers, Ricardo S., 2020. "Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Barker, C.T. & Newby, M.J., 2009. "Optimal non-periodic inspection for a multivariate degradation model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 33-43.
    9. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Palayangoda, Lochana K. & Ng, Hon Keung Tony, 2021. "Semiparametric and nonparametric evaluation of first-passage distribution of bivariate degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    12. Cha, Ji Hwan & Finkelstein, Maxim, 2014. "Some notes on unobserved parameters (frailties) in reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 99-103.
    13. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Saberzadeh, Zahra & Razmkhah, Mostafa & Amini, Mohammad, 2023. "Bayesian reliability analysis of complex k-out-of-n: â„“ systems under degradation performance," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Fang, Guanqi & Pan, Rong & Wang, Yukun, 2022. "Inverse Gaussian processes with correlated random effects for multivariate degradation modeling," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1177-1193.
    5. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    7. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    9. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    10. Zhu, Xiaojun & Balakrishnan, N., 2022. "One-shot device test data analysis using non-parametric and semi-parametric inferential methods and applications," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Baussaron, Julien & Mihaela, Barreau & Léo, Gerville-Réache & Fabrice, Guérin & Paul, Schimmerling, 2014. "Reliability assessment based on degradation measurements: How to compare some models?," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 236-241.
    15. Saberzadeh, Zahra & Razmkhah, Mostafa, 2022. "Reliability of degrading complex systems with two dependent components per element," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Palayangoda, Lochana K. & Ng, Hon Keung Tony, 2021. "Semiparametric and nonparametric evaluation of first-passage distribution of bivariate degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Wu, Xin & Huang, Tingting & Liu, Jie, 2023. "Common stochastic effects induced multivariate degradation process with temporal dependency in degradation characteristic and unit dimensions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    18. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    20. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.