IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v223y2022ics0951832022001636.html
   My bibliography  Save this article

Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations

Author

Listed:
  • Zheng, Xiaoyu
  • Tamaki, Hitoshi
  • Sugiyama, Tomoyuki
  • Maruyama, Yu

Abstract

Dynamic probabilistic risk assessment (PRA) more explicitly treats timing issues and stochastic elements of risk models. It extensively resorts to iterative simulations of accident progressions for the quantification of risk triplets including accident scenarios, probabilities and consequences. Dynamic PRA leverages the level of detail for risk modeling while intricately increases computational complexities, which result in heavy computational cost. This paper proposes to apply multi-fidelity simulations for a cost-effective dynamic PRA. It applies and improves the multi-fidelity importance sampling (MFIS) algorithm to generate cost-effective samples of nuclear reactor accident sequences. Sampled accident sequences are simulated in a parallel manner by using mechanistic code, which is treated as a high-fidelity model. Adaptively trained by using high-fidelity data, low-fidelity model is used to predicting simulation results. Interested predictions with reactor core damages are sorted out to build density functions of the biased distribution for importance sampling. After when collect enough number of high-fidelity data, risk triplets can be estimated. By solving a demonstration problem and a practical PRA problem by using MELCOR 2.2, the approach has been proven to be effective for risk assessment. Comparing with previous studies, the proposed multi-fidelity approach provides comparative estimation of risk triplets, while significantly reduces computational cost.

Suggested Citation

  • Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001636
    DOI: 10.1016/j.ress.2022.108503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Queral, C. & Gómez-Magán, J. & París, C. & Rivas-Lewicky, J. & Sánchez-Perea, M. & Gil, J. & Mula, J. & Meléndez, E. & Hortal, J. & Izquierdo, J.M. & Fernández, I., 2018. "Dynamic event trees without success criteria for full spectrum LOCA sequences applying the integrated safety assessment (ISA) methodology," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 152-168.
    2. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Catalyurek, Umit & Rutt, Benjamin & Metzroth, Kyle & Hakobyan, Aram & Aldemir, Tunc & Denning, Richard & Dunagan, Sean & Kunsman, David, 2010. "Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 278-294.
    4. Zamalieva, Daniya & Yilmaz, Alper & Aldemir, Tunc, 2013. "Online scenario labeling using a hidden Markov model for assessment of nuclear plant state," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 1-13.
    5. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    6. Grabaskas, Dave & Nakayama, Marvin K. & Denning, Richard & Aldemir, Tunc, 2016. "Advantages of variance reduction techniques in establishing confidence intervals for quantiles," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 187-203.
    7. Maljovec, D. & Liu, S. & Wang, B. & Mandelli, D. & Bremer, P.-T. & Pascucci, V. & Smith, C., 2016. "Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 262-276.
    8. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    9. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    10. Enrico Zio, 2013. "The Monte Carlo Simulation Method for System Reliability and Risk Analysis," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-4588-2, December.
    11. Enrico Zio, 2013. "System Reliability and Risk Analysis by Monte Carlo Simulation," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 59-81, Springer.
    12. Francesco, Di Maio & Matteo, Fumagalli & Carlo, Guerini & Federico, Perotti & Enrico, Zio, 2021. "Time-dependent reliability analysis of the reactor building of a nuclear power plant for accounting of its aging and degradation," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Parhizkar, Tarannom & Vinnem, Jan Erik & Utne, Ingrid Bouwer & Mosleh, Ali, 2021. "Supervised Dynamic Probabilistic Risk Assessment of Complex Systems, Part 1: General Overview," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Karanki, D.R. & Rahman, S. & Dang, V.N. & Zerkak, O., 2017. "Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 91-102.
    15. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    16. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    17. Modarres, Mohammad & Zhou, Taotao & Massoud, Mahmoud, 2017. "Advances in multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 87-100.
    18. Cadini, F. & Gioletta, A. & Zio, E., 2015. "Improved metamodel-based importance sampling for the performance assessment of radioactive waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 188-197.
    19. Mandelli, Diego & Yilmaz, Alper & Aldemir, Tunc & Metzroth, Kyle & Denning, Richard, 2013. "Scenario clustering and dynamic probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 146-160.
    20. Ruijters, Enno & Reijsbergen, Daniël & de Boer, Pieter-Tjerk & Stoelinga, Mariëlle, 2019. "Rare event simulation for dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 220-231.
    21. Podofillini, L. & Zio, E. & Mercurio, D. & Dang, V.N., 2010. "Dynamic safety assessment: Scenario identification via a possibilistic clustering approach," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 534-549.
    22. Ibánez, L. & Hortal, J. & Queral, C. & Gómez-Magán, J. & Sánchez-Perea, M. & Fernández, I. & Meléndez, E. & Expósito, A. & Izquierdo, J.M. & Gil, J. & Marrao, H. & Villalba-Jabonero, E., 2016. "Application of the Integrated Safety Assessment methodology to safety margins. Dynamic Event Trees, Damage Domains and Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 170-193.
    23. Enrico Zio, 2013. "System Reliability and Risk Analysis," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 7-17, Springer.
    24. Parhizkar, Tarannom & Utne, Ingrid Bouwer & Vinnem, Jan Erik & Mosleh, Ali, 2021. "Supervised dynamic probabilistic risk assessment of complex systems, part 2: Application to risk-informed decision making, practice and results," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    25. Mandelli, D. & Parisi, C. & Alfonsi, A. & Maljovec, D. & Boring, R. & Ewing, S. & St Germain, S. & Smith, C. & Rabiti, C. & Rasmussen, M., 2019. "Multi-unit dynamic PRA," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 303-317.
    26. Papaioannou, Iason & Geyer, Sebastian & Straub, Daniel, 2019. "Improved cross entropy-based importance sampling with a flexible mixture model," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jo, Wooseok & Lee, Seung Jun, 2024. "Human reliability evaluation method covering operator action timing for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Mazgaj, Piotr & Darnowski, Piotr & Kaszko, Aleksej & Hortal, Javier & Dusic, Milorad & Mendizábal, Rafael & Pelayo, Fernando, 2022. "Demonstration of the E-BEPU methodology for SL-LOCA in a Gen-III PWR reactor," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    4. Shiyu Chen & Wei Wang & Enrico Zio, 2021. "A Simulation-Based Multi-Objective Optimization Framework for the Production Planning in Energy Supply Chains," Energies, MDPI, vol. 14(9), pages 1-27, May.
    5. Cadini, F. & Gioletta, A., 2016. "A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 15-27.
    6. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    7. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    8. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Luo, Pengcheng & Hu, Yang, 2013. "System risk evolution analysis and risk critical event identification based on event sequence diagram," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 36-44.
    10. Guowang Meng & Hongle Li & Bo Wu & Guangyang Liu & Huazheng Ye & Yiming Zuo, 2023. "Prediction of the Tunnel Collapse Probability Using SVR-Based Monte Carlo Simulation: A Case Study," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    11. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    12. Michele Compare & Francesco Di Maio & Enrico Zio & Fausto Carlevaro & Sara Mattafirri, 2016. "Improving scheduled maintenance by missing data reconstruction: A double-loop Monte Carlo approach," Journal of Risk and Reliability, , vol. 230(5), pages 502-511, October.
    13. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    18. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    19. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.