IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v221y2022ics0951832021007523.html
   My bibliography  Save this article

Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk

Author

Listed:
  • Jakeman, John D.
  • Kouri, Drew P.
  • Huerta, J. Gabriel

Abstract

We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder’s risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.

Suggested Citation

  • Jakeman, John D. & Kouri, Drew P. & Huerta, J. Gabriel, 2022. "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832021007523
    DOI: 10.1016/j.ress.2021.108280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Lim, HyeongUk & Manuel, Lance, 2021. "Distribution-free polynomial chaos expansion surrogate models for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Li, Mingyang & Wang, Zequn, 2019. "Surrogate model uncertainty quantification for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    5. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "On confidence intervals for failure probability estimates in Kriging-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    7. Zuniga, M. Munoz & Murangira, A. & Perdrizet, T., 2021. "Structural reliability assessment through surrogate based importance sampling with dimension reduction," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Vohra, Manav & Nath, Paromita & Mahadevan, Sankaran & Tina Lee, Yung-Tsun, 2020. "Fast surrogate modeling using dimensionality reduction in model inputs and field output: Application to additive manufacturing," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Cao, Quoc Dung & Choe, Youngjun, 2019. "Cross-entropy based importance sampling for stochastic simulation models," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    11. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2018. "Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation," Papers 1811.11301, arXiv.org, revised Feb 2019.
    12. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    13. Bao, Yuequan & Xiang, Zhengliang & Li, Hui, 2021. "Adaptive subset searching-based deep neural network method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    16. Chaudhuri, Anirban & Kramer, Boris & Willcox, Karen E., 2020. "Information Reuse for Importance Sampling in Reliability-Based Design Optimization," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    19. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bansal, Parth & Zheng, Zhuoyuan & Shao, Chenhui & Li, Jingjing & Banu, Mihaela & Carlson, Blair E & Li, Yumeng, 2022. "Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Lee, Dongjin & Kramer, Boris, 2023. "Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    2. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    3. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    5. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    7. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    8. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    9. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    10. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    11. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    12. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    13. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    14. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    15. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    16. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    18. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    19. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    20. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832021007523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.