IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp78-88.html
   My bibliography  Save this article

A reliability decision framework for multiple repairable units

Author

Listed:
  • Garmabaki, A.H.S.
  • Ahmadi, Alireza
  • Block, Jan
  • Pham, Hoang
  • Kumar, Uday

Abstract

In practice, the analyst is often dealing with multiple repairable units, installed in different positions or functioning under different operating conditions, and maintained by different disciplines. This paper presents a decision framework to identify an appropriate reliability model for massive multiple repairable units. It splits non-homogeneous failure data into homogeneous groups and classifies them based on their failure trends using statistical tests. The framework discusses different scenarios for analysing multiple repairable units, according to trend, intensity, and dependency of the units׳ failure data. The proposed framework has been verified in a fleet of aircraft and in two simulated data sets. The results show a reliability model of multiple repairable units may contain a mixture of different stochastic models. Considering single reliability models for such populations may cause erroneous calculation of the time to failure of a particular unit, which can, in turn, lead to faulty conclusions and decisions. When dealing with massive and non-homogeneous multiple repairable units, the application of the proposed framework can facilitate the selection of an appropriate reliability model.

Suggested Citation

  • Garmabaki, A.H.S. & Ahmadi, Alireza & Block, Jan & Pham, Hoang & Kumar, Uday, 2016. "A reliability decision framework for multiple repairable units," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 78-88.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:78-88
    DOI: 10.1016/j.ress.2016.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016000296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Dyck, Jozef & Verdonck, Tim, 2014. "Precision of power-law NHPP estimates for multiple systems with known failure rate scaling," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 143-152.
    2. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    3. Viertävä, Janne & Vaurio, Jussi K., 2009. "Testing statistical significance of trends in learning, ageing and safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1128-1132.
    4. Giorgio, M. & Guida, M. & Pulcini, G., 2014. "Repairable system analysis in presence of covariates and random effects," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 271-281.
    5. Taghipour, Sharareh & Banjevic, Dragan, 2011. "Trend analysis of the power law process using Expectation–Maximization algorithm for data censored by inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1340-1348.
    6. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    7. Barabadi, Abbas & Tobias Gudmestad, Ove & Barabady, Javad, 2015. "RAMS data collection under Arctic conditions," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 92-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamzeh Soltanali & A.H.S Garmabaki & Adithya Thaduri & Aditya Parida & Uday Kumar & Abbas Rohani, 2019. "Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing," Journal of Risk and Reliability, , vol. 233(4), pages 682-697, August.
    2. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    3. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    4. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "Resilience analysis: A formulation to model risk factors on complex system resilience," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 871-883, October.
    5. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    6. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    7. Slimacek, Vaclav & Lindqvist, Bo Henry, 2017. "Nonhomogeneous Poisson process with nonparametric frailty and covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 75-83.
    8. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    2. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    3. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    4. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    5. Mostafa Aliyari & Yonas Z Ayele & Abbas Barabadi & Enrique Lopez Droguett, 2019. "Risk analysis in low-voltage distribution systems," Journal of Risk and Reliability, , vol. 233(2), pages 118-138, April.
    6. Slimacek, Vaclav & Lindqvist, Bo Henry, 2017. "Nonhomogeneous Poisson process with nonparametric frailty and covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 75-83.
    7. Yizhen, Peng & Yu, Wang & Jingsong, Xie & Yanyang, Zi, 2020. "Adaptive stochastic-filter-based failure prediction model for complex repairable systems under uncertainty conditions," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Ali Nouri Gharahasanlou & Mohammad Ataei & Reza Khalokakaie & Abbas Barabadi & Vahid Einian, 2017. "Risk based maintenance strategy: a quantitative approach based on time-to-failure model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 602-611, September.
    9. Hamzeh Soltanali & A.H.S Garmabaki & Adithya Thaduri & Aditya Parida & Uday Kumar & Abbas Rohani, 2019. "Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing," Journal of Risk and Reliability, , vol. 233(4), pages 682-697, August.
    10. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    11. Zeynab Allahkarami & Ahmad Reza Sayadi & Behzad Ghodrati, 2021. "Identifying the mixed effects of unobserved and observed risk factors on the reliability of mining hauling system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 281-289, April.
    12. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    13. Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
    14. Zhi-Ming Wang & Xia Yu, 2013. "Log-linear process modeling for repairable systems with time trends and its applications in reliability assessment of numerically controlled machine tools," Journal of Risk and Reliability, , vol. 227(1), pages 55-65, February.
    15. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
    16. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    17. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    18. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    19. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    20. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:78-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.