IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v144y2015icp61-67.html
   My bibliography  Save this article

Emerging risk – Conceptual definition and a relation to black swan type of events

Author

Listed:
  • Flage, R.
  • Aven, T.

Abstract

The concept of emerging risk has gained increasing attention in recent years. The term has an intuitive appeal and meaning but a consistent and agreed definition is missing. We perform an in-depth analysis of this concept, in particular its relation to black swan type of events, and show that these can be considered meaningful and complementary concepts by relating emerging risk to known unknowns and black swans to unknown knowns, unknown unknowns and a subset of known knowns. The former is consistent with saying that we face emerging risk related to an activity when the background knowledge is weak but contains indications/justified beliefs that a new type of event (new in the context of that activity) could occur in the future and potentially have severe consequences to something humans value. The weak background knowledge among other things results in difficulty specifying consequences and possibly also in fully specifying the event itself; i.e. in difficulty specifying scenarios. Here knowledge becomes the key concept for both emerging risk and black swan type of events, allowing for taking into consideration time dynamics since knowledge develops over time. Some implications of our findings in terms of risk assessment and risk management are pointed out.

Suggested Citation

  • Flage, R. & Aven, T., 2015. "Emerging risk – Conceptual definition and a relation to black swan type of events," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 61-67.
  • Handle: RePEc:eee:reensy:v:144:y:2015:i:c:p:61-67
    DOI: 10.1016/j.ress.2015.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aven, T. & Vinnem, J.E. & Wiencke, H.S., 2007. "A decision framework for risk management, with application to the offshore oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 433-448.
    2. Aven, Terje & Krohn, Bodil S., 2014. "A new perspective on how to understand, assess and manage risk and the unforeseen," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 1-10.
    3. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    2. Gabriel Kuper & Fabio Massacci & Woohyun Shim & Julian Williams, 2020. "Who Should Pay for Interdependent Risk? Policy Implications for Security Interdependence Among Airports," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1001-1019, May.
    3. Sujan, Mark A. & Habli, Ibrahim & Kelly, Tim P. & Gühnemann, Astrid & Pozzi, Simone & Johnson, Christopher W., 2017. "How can health care organisations make and justify decisions about risk reduction? Lessons from a cross-industry review and a health care stakeholder consensus development process," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 1-11.
    4. Bikramaditya Ghosh & Spyros Papathanasiou & Georgios Pergeris, 2022. "Did cryptocurrencies exhibit log‐periodic power law signature during the second wave of COVID‐19?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
    5. Khara D. Grieger & Tyler Felgenhauer & Ortwin Renn & Jonathan Wiener & Mark Borsuk, 2019. "Emerging risk governance for stratospheric aerosol injection as a climate management technology," Environment Systems and Decisions, Springer, vol. 39(4), pages 371-382, December.
    6. Davide Settembre-Blundo & Rocío González-Sánchez & Sonia Medina-Salgado & Fernando E. García-Muiña, 2021. "Flexibility and Resilience in Corporate Decision Making: A New Sustainability-Based Risk Management System in Uncertain Times," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 107-132, December.
    7. Nikolaos P Ventikos & Konstantinos Louzis, 2023. "Developing next generation marine risk analysis for ships: Bio-inspiration for building immunity," Journal of Risk and Reliability, , vol. 237(2), pages 405-424, April.
    8. Julie Shortridge & Janey Smith Camp, 2019. "Addressing Climate Change as an Emerging Risk to Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 959-967, May.
    9. Joseph Cuthbertson & Jose M. Rodriguez-Llanes & Andrew Robertson & Frank Archer, 2019. "Current and Emerging Disaster Risks Perceptions in Oceania: Key Stakeholders Recommendations for Disaster Management and Resilience Building," IJERPH, MDPI, vol. 16(3), pages 1-13, February.
    10. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Chabane Mazri, 2017. "(Re) Defining Emerging Risks," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2053-2065, November.
    12. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    13. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    14. Terje Aven & Roger Flage, 2020. "Foundational Challenges for Advancing the Field and Discipline of Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2128-2136, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Yang, 2019. "Reforming Health, Safety, and Environmental Regulation for Offshore Operations in China: Risk and Resilience Approaches?," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    2. Charles Sabel & Gary Herrigel & Peer Hull Kristensen, 2018. "Regulation under uncertainty: The coevolution of industry and regulation," Regulation & Governance, John Wiley & Sons, vol. 12(3), pages 371-394, September.
    3. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Thai, Vinh V., 2021. "An Operational Risk Analysis Model for Container Shipping Systems considering Uncertainty Quantification," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. P. Pablo Poveda-Orjuela & J. Carlos García-Díaz & Alexander Pulido-Rojano & Germán Cañón-Zabala, 2020. "Parameterization, Analysis, and Risk Management in a Comprehensive Management System with Emphasis on Energy and Performance (ISO 50001: 2018)," Energies, MDPI, vol. 13(21), pages 1-43, October.
    5. Xiao Zhang & Xiaofeng Hu & Yiping Bai & Jiansong Wu, 2020. "Risk Assessment of Gas Leakage from School Laboratories Based on the Bayesian Network," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    6. Gulsum Kubra Kaya & James Ward & John Clarkson, 2019. "A Review of Risk Matrices Used in Acute Hospitals in England," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1060-1070, May.
    7. Aven, Terje, 2014. "On the meaning of the special-cause variation concept used in the quality discourse – And its link to unforeseen and surprising events in risk management," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 81-86.
    8. Antonín Korauš & Miroslav Gombár & Pavel Kelemen & Jozef Polák, 2019. "Analysis of respondents' opinions and attitudes toward the security of payment systems," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 1987-2002, June.
    9. Marcela Tuzová & Martina Toulová & Lea Kubíčková, 2017. "The Specifics of the Internationalization Process of Czech SMEs in the Food Industry," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(3), pages 1055-1064.
    10. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    11. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    12. Bjerga, Torbjørn & Aven, Terje, 2015. "Adaptive risk management using new risk perspectives – an example from the oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 75-82.
    13. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    14. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    15. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    16. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    17. Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.
    18. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    19. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    20. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:144:y:2015:i:c:p:61-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.