IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v134y2015icp32-50.html
   My bibliography  Save this article

Safety and operational integrity evaluation and design optimization of safety instrumented systems

Author

Listed:
  • Innal, Fares
  • Dutuit, Yves
  • Chebila, Mourad

Abstract

The control of risks generated by modern industrial facilities could not be guaranteed without the use of safety instrumented systems (SIS). The failure of SIS to achieve their assigned functions could result in huge consequences with respect to both (i) the safety of the monitored system (relating to the SIS safety integrity) as well as (ii) its production availability due to false trips (relating to the SIS operational integrity). Furthermore, these two aspects are usually antagonistic. Therefore, the assurance of this double performance comes first by a thoughtful design of SIS. In that case, the aim of this paper is twofold. First, it focuses on the establishment of generic analytical formulations allowing the assessment of the SIS performance regarding safety integrity and operational integrity. Second, it deals with SIS architecture design optimization. The optimization problem is firstly addressed by a preliminary search for a balance between the above two quantities relying on the analysis of the structure of KooN architectures. Then, a more general and suitable approach based on genetic algorithms is proposed, where several performance indicators and the costs of purchase and maintenance are expected to be considered simultaneously. This general approach is illustrated through an application example.

Suggested Citation

  • Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
  • Handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:32-50
    DOI: 10.1016/j.ress.2014.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lundteigen, Mary Ann & Rausand, Marvin, 2008. "Spurious activation of safety instrumented systems in the oil and gas industry: Basic concepts and formulas," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1208-1217.
    2. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    3. Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
    4. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    5. Oliveira, Luiz Fernando & Abramovitch, Rafael Nelson, 2010. "Extension of ISA TR84.00.02 PFD equations to KooN architectures," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 707-715.
    6. Marseguerra, M. & Zio, E. & Martorell, S., 2006. "Basics of genetic algorithms optimization for RAMS applications," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 977-991.
    7. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    8. F Innal & Y Dutuit & A Rauzy & J-P Signoret, 2010. "New insight into the average probability of failure on demand and the probability of dangerous failure per hour of safety instrumented systems," Journal of Risk and Reliability, , vol. 224(2), pages 75-86, June.
    9. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    10. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2013. "New PFH-formulas for k-out-of-n:F-systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 112-118.
    11. Y Dutuit & A B Rauzy & J-P Signoret, 2008. "A snapshot of methods and tools to assess safety integrity levels of high-integrity protection systems," Journal of Risk and Reliability, , vol. 222(3), pages 371-379, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eisinger, S. & Oliveira, L.F., 2021. "Evaluating the safety integrity of safety systems for all values of the demand rate," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    4. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    5. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    6. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    7. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    8. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    9. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    10. Jigar, Abraham Almaw & Liu, Yiliu & Lundteigen, Mary Ann, 2016. "Spurious activation analysis of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 15-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    2. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    3. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    4. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    5. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    6. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    7. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Okafor, Ekene Gabriel & Sun, You-Chao, 2012. "Multi-objective optimization of a series–parallel system using GPSIA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 61-71.
    9. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    11. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    12. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    13. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    14. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    15. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    16. Cacheux, Pierre-Joseph & Collas, Stéphane & Dutuit, Yves & Folleau, Cyrille & Signoret, Jean-Pierre & Thomas, Philippe, 2013. "Assessment of the expected number and frequency of failures of periodically tested systems," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 61-70.
    17. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    18. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    19. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 162-179.
    20. Ding, Long & Wang, Hong & Kang, Kai & Wang, Kai, 2014. "A novel method for SIL verification based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 36-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:32-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.