IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v128y2014icp66-83.html
   My bibliography  Save this article

Bounds on survival probability given mean probability of failure per demand; and the paradoxical advantages of uncertainty

Author

Listed:
  • Strigini, Lorenzo
  • Wright, David

Abstract

When deciding whether to accept into service a new safety-critical system, or choosing between alternative systems, uncertainty about the parameters that affect future failure probability may be a major problem. This uncertainty can be extreme if there is the possibility of unknown design errors (e.g. in software), or wide variation between nominally equivalent components.

Suggested Citation

  • Strigini, Lorenzo & Wright, David, 2014. "Bounds on survival probability given mean probability of failure per demand; and the paradoxical advantages of uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 66-83.
  • Handle: RePEc:eee:reensy:v:128:y:2014:i:c:p:66-83
    DOI: 10.1016/j.ress.2014.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bunea, C. & Charitos, T. & Cooke, R.M. & Becker, G., 2005. "Two-stage Bayesian models—application to ZEDB project," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 123-130.
    2. Zeelenberg, M., 1999. "Anticipated regret, expected feedback and behavioral decision-making," Other publications TiSEM 38371d1b-31fd-45b0-860f-b, Tilburg University, School of Economics and Management.
    3. Lin, Shi-Woei & Bier, Vicki M., 2008. "A study of expert overconfidence," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 711-721.
    4. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    5. Pilch, Martin & Trucano, Timothy G. & Helton, Jon C., 2011. "Ideas underlying the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 965-975.
    6. Vaurio, Jussi K. & Jänkälä, Kalle E., 2006. "Evaluation and comparison of estimation methods for failure rates and probabilities," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 209-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rychlik, Tomasz, 2017. "Evaluations of quantiles of system lifetime distributions," European Journal of Operational Research, Elsevier, vol. 256(3), pages 935-944.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iaccarino, Gianluca & Sharp, David & Glimm, James, 2013. "Quantification of margins and uncertainties using multiple gates and conditional probabilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 99-113.
    2. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    4. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    5. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Quigley, John & Hardman, Gavin & Bedford, Tim & Walls, Lesley, 2011. "Merging expert and empirical data for rare event frequency estimation: Pool homogenisation for empirical Bayes models," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 687-695.
    7. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    8. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    9. Zhao, Xingyu & Littlewood, Bev & Povyakalo, Andrey & Strigini, Lorenzo & Wright, David, 2018. "Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 265-282.
    10. Teferra, Kirubel & Shields, Michael D. & Hapij, Adam & Daddazio, Raymond P., 2014. "Mapping model validation metrics to subject matter expert scores for model adequacy assessment," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 9-19.
    11. repec:cup:judgdm:v:3:y:2008:i:6:p:449-456 is not listed on IDEAS
    12. David R. Mandel & Daniel Irwin, 2021. "Tracking accuracy of strategic intelligence forecasts: Findings from a long‐term Canadian study," Futures & Foresight Science, John Wiley & Sons, vol. 3(3-4), September.
    13. Amos Schurr & Yaakov Kareev & Judith Avrahami & Ilana Ritov, 2012. "Taking the Broad Perspective: Risky Choices in Repeated Proficiency Tasks," Discussion Paper Series dp621, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    14. Sacha Bourgeois-Gironde, 2017. "How regret moves individual and collective choices towards rationality," Chapters, in: Morris Altman (ed.), Handbook of Behavioural Economics and Smart Decision-Making, chapter 11, pages 188-204, Edward Elgar Publishing.
    15. Qin, Jie, 2015. "A model of regret, investor behavior, and market turbulence," Journal of Economic Theory, Elsevier, vol. 160(C), pages 150-174.
    16. Sugden, Robert & Wang, Mengjie & Zizzo, Daniel John, 2019. "Take it or leave it: Experimental evidence on the effect of time-limited offers on consumer behaviour," Journal of Economic Behavior & Organization, Elsevier, vol. 168(C), pages 1-23.
    17. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Yan, Jubo & Kniffin, Kevin M. & Kunreuther, Howard C. & Schulze, William D., 2020. "The roles of reason and emotion in private and public responses to terrorism," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 778-796.
    19. Zhang, Guoquan & Li, Guohao & Shang, Jennifer, 2023. "Optimizing mixed bundle pricing strategy: Advance selling and consumer regret," Omega, Elsevier, vol. 115(C).
    20. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    21. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:128:y:2014:i:c:p:66-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.