IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v128y2014icp1-16.html
   My bibliography  Save this article

A new kind of regional importance measure of the input variable and its state dependent parameter solution

Author

Listed:
  • Li, Luyi
  • Lu, Zhenzhou
  • Hu, JiXiang

Abstract

To further analyze the effect of different regions within input variable on the variance and mean of the model output, two new regional importance measures (RIMs) are proposed, which are the “contribution to variance of conditional mean (CVCM)†and the “contribution to mean of conditional mean (CMCM)†. The properties of the two RIMs are analyzed and their relationships with the existing contribution to sample variance (CSV) and contribution to sample mean (CSM) are derived. Based on their characteristics, the highly efficient state dependent parameter (SDP) method is introduced to estimate them. By virtue of the advantages of the SDP-based method, the same set of sample points utilized for solving CSM and CSV is enough to estimate CVCM and CMCM. Several examples demonstrate that CVCM can provide further information on the existing CSV, which can effectively instruct the engineer on how to achieve a targeted reduction of the main effect of each input variable. CMCM can act as effectively as the CSM, but the convergence and stability for estimating CMCM by numerical simulation is better than those for estimating CSM. Besides, the efficiency and accuracy of the SDP-based method are also testified by the examples.

Suggested Citation

  • Li, Luyi & Lu, Zhenzhou & Hu, JiXiang, 2014. "A new kind of regional importance measure of the input variable and its state dependent parameter solution," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 1-16.
  • Handle: RePEc:eee:reensy:v:128:y:2014:i:c:p:1-16
    DOI: 10.1016/j.ress.2014.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    2. Ratto, M. & Pagano, A. & Young, P.C., 2009. "Non-parametric estimation of conditional moments for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 237-243.
    3. Tarantola, S. & Kopustinskas, V. & Bolado-Lavin, R. & Kaliatka, A. & Ušpuras, E. & Vaišnoras, M., 2012. "Sensitivity analysis using contribution to sample variance plot: Application to a water hammer model," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 62-73.
    4. Bolado-Lavin, R. & Castaings, W. & Tarantola, S., 2009. "Contribution to the sample mean plot for graphical and numerical sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1041-1049.
    5. Marco Ratto & Andrea Pagano, 2010. "Using recursive algorithms for the efficient identification of smoothing spline ANOVA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 367-388, December.
    6. Castillo, Enrique & Mínguez, Roberto & Castillo, Carmen, 2008. "Sensitivity analysis in optimization and reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1788-1800.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, H.W. & Pan, H.Y. & He, L. & Zhang, J.Q., 2016. "Importance analysis of off-grid wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 999-1007.
    2. Dawei Zhang & Weilin Li & Xiaohua Wu & Tie Liu, 2018. "An Efficient Regional Sensitivity Analysis Method Based on Failure Probability with Hybrid Uncertainty," Energies, MDPI, vol. 11(7), pages 1-19, June.
    3. Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.
    4. Nogal, M. & Nogal, A., 2021. "Sensitivity method for extreme-based engineering problems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Wei, Pengfei & Lu, Zhenzhou & Ruan, Wenbin & Song, Jingwen, 2014. "Regional sensitivity analysis using revised mean and variance ratio functions," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 121-135.
    3. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    4. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Regional and parametric sensitivity analysis of Sobol׳ indices," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 87-100.
    5. Wei, Pengfei & Lu, Zhenzhou & Yuan, Xiukai, 2013. "Monte Carlo simulation for moment-independent sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 60-67.
    6. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    7. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    8. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Uncertainty Importance Analysis Using Parametric Moment Ratio Functions," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 223-234, February.
    9. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    10. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    11. Wenbin Ruan & Zhenzhou Lu & Longfei Tian, 2013. "A modified variance-based importance measure and its solution by state dependent parameter," Journal of Risk and Reliability, , vol. 227(1), pages 3-15, February.
    12. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    13. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    14. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    15. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    16. Luo, Xiaopeng & Lu, Zhenzhou & Xu, Xin, 2014. "Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 140-148.
    17. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    18. Pannier, S. & Graf, W., 2015. "Sectional global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 110-117.
    19. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    20. Haro Sandoval, Eduardo & Anstett-Collin, Floriane & Basset, Michel, 2012. "Sensitivity study of dynamic systems using polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 15-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:128:y:2014:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.