IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8274-d698067.html
   My bibliography  Save this article

Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started

Author

Listed:
  • Mirko Ginocchi

    (E.ON Energy Research Center, Institute for Automation of Complex Power Systems, RWTH Aachen University, 52074 Aachen, Germany)

  • Ferdinanda Ponci

    (E.ON Energy Research Center, Institute for Automation of Complex Power Systems, RWTH Aachen University, 52074 Aachen, Germany)

  • Antonello Monti

    (E.ON Energy Research Center, Institute for Automation of Complex Power Systems, RWTH Aachen University, 52074 Aachen, Germany)

Abstract

Power systems are increasingly affected by various sources of uncertainty at all levels. The investigation of their effects thus becomes a critical challenge for their design and operation. Sensitivity Analysis (SA) can be instrumental for understanding the origins of system uncertainty, hence allowing for a robust and informed decision-making process under uncertainty. The SA value as a support tool for model-based inference is acknowledged; however, its potential is not fully realized yet within the power system community. This is due to an improper use of long-established SA practices, which sometimes prevent an in-depth model sensitivity investigation, as well as to partial communication between the SA community and the final users, ultimately hindering non-specialists’ awareness of the existence of effective strategies to tackle their own research questions. This paper aims at bridging the gap between SA and power systems via a threefold contribution: (i) a bibliometric study of the state-of-the-art SA to identify common practices in the power system modeling community; (ii) a getting started overview of the most widespread SA methods to support the SA user in the selection of the fittest SA method for a given power system application; (iii) a user-oriented general workflow to illustrate the implementation of SA best practices via a simple technical example.

Suggested Citation

  • Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8274-:d:698067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tietje, Olaf, 2005. "Identification of a small reliable and efficient set of consistent scenarios," European Journal of Operational Research, Elsevier, vol. 162(2), pages 418-432, April.
    2. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    3. Rodriguez-Calvo, Andrea & Cossent, Rafael & Frías, Pablo, 2018. "Scalability and replicability analysis of large-scale smart grid implementations: Approaches and proposals in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 1-15.
    4. Wagener, Thorsten & Pianosi, Francesca, 2019. "What has Global Sensitivity Analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in earth system modelling," Earth Arxiv g9ma5, Center for Open Science.
    5. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    6. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    7. Saltelli, Andrea & Ratto, Marco & Tarantola, Stefano & Campolongo, Francesca, 2006. "Sensitivity analysis practices: Strategies for model-based inference," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1109-1125.
    8. Richard E. Wendell, 1985. "The Tolerance Approach to Sensitivity Analysis in Linear Programming," Management Science, INFORMS, vol. 31(5), pages 564-578, May.
    9. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Zio, Enrico & Podofillini, Luca, 2006. "Accounting for components interactions in the differential importance measure," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1163-1174.
    11. Tarantola, S. & Kopustinskas, V. & Bolado-Lavin, R. & Kaliatka, A. & Ušpuras, E. & Vaišnoras, M., 2012. "Sensitivity analysis using contribution to sample variance plot: Application to a water hammer model," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 62-73.
    12. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    13. Simon French, 2003. "Modelling, making inferences and making decisions: The roles of sensitivity analysis," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 229-251, December.
    14. Tarantola, S. & Gatelli, D. & Mara, T.A., 2006. "Random balance designs for the estimation of first order global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 717-727.
    15. Enrico Zio, 2013. "The Monte Carlo Simulation Method for System Reliability and Risk Analysis," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-4588-2, December.
    16. Storlie, Curtis B. & Helton, Jon C., 2008. "Multiple predictor smoothing methods for sensitivity analysis: Description of techniques," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 28-54.
    17. Bolado-Lavin, R. & Castaings, W. & Tarantola, S., 2009. "Contribution to the sample mean plot for graphical and numerical sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1041-1049.
    18. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    19. Enrico Zio, 2013. "System Reliability and Risk Analysis by Monte Carlo Simulation," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 59-81, Springer.
    20. Ted G. Eschenbach, 1992. "Spiderplots versus Tornado Diagrams for Sensitivity Analysis," Interfaces, INFORMS, vol. 22(6), pages 40-46, December.
    21. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    22. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    23. E. Borgonovo & C. L. Smith, 2011. "A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA," Operations Research, INFORMS, vol. 59(6), pages 1461-1476, December.
    24. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    25. Sobol´ I.M. & Kucherenko S.S., 2005. "On global sensitivity analysis of quasi-Monte Carlo algorithms," Monte Carlo Methods and Applications, De Gruyter, vol. 11(1), pages 83-92, March.
    26. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    27. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    28. Ronald L. Iman & Stephen C. Hora, 1990. "A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 401-406, September.
    29. Mara, Thierry Alex, 2009. "Extension of the RBD-FAST method to the computation of global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1274-1281.
    30. Jacques, Julien & Lavergne, Christian & Devictor, Nicolas, 2006. "Sensitivity analysis in presence of model uncertainty and correlated inputs," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1126-1134.
    31. Enrico Zio, 2013. "System Reliability and Risk Analysis," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 7-17, Springer.
    32. Jan A Snyman & Daniel N Wilke, 2018. "Practical Mathematical Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-77586-9, September.
    33. Storlie, Curtis B. & Helton, Jon C., 2008. "Multiple predictor smoothing methods for sensitivity analysis: Example results," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 55-77.
    34. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    35. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    36. Plischke, Elmar, 2010. "An effective algorithm for computing global sensitivity indices (EASI)," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 354-360.
    37. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    38. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    39. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "Uncertainty and sensitivity analysis for models with correlated parameters," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1563-1573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan Qin & Yuqing Jin & Meng Tian & Ping Ju & Shun Zhou, 2023. "Comparative Study of Global Sensitivity Analysis and Local Sensitivity Analysis in Power System Parameter Identification," Energies, MDPI, vol. 16(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    2. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    3. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    4. Plischke, Elmar, 2012. "An adaptive correlation ratio method using the cumulative sum of the reordered output," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 149-156.
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    7. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    8. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    9. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    10. Hu, Zhen & Mahadevan, Sankaran, 2019. "Probability models for data-Driven global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 40-57.
    11. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    12. Lin, Yan-Hui & Yam, Richard C.M., 2017. "Uncertainty importance measures of dependent transition rates for transient and steady state probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 402-409.
    13. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    14. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    15. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    16. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.
    17. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    18. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    19. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    20. Gatelli, D. & Kucherenko, S. & Ratto, M. & Tarantola, S., 2009. "Calculating first-order sensitivity measures: A benchmark of some recent methodologies," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1212-1219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8274-:d:698067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.