IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v103y2012icp1-10.html
   My bibliography  Save this article

Optimal maintenance policy for a system subject to damage in a discrete time process

Author

Listed:
  • Chien, Yu-Hung
  • Sheu, Shey-Huei
  • Zhang, Zhe George

Abstract

Consider a system operating over n discrete time periods (n=1, 2, …). Each operation period causes a random amount of damage to the system which accumulates over time periods. The system fails when the cumulative damage exceeds a failure level ζ and a corrective maintenance (CM) action is immediately taken. To prevent such a failure, a preventive maintenance (PM) may be performed. In an operation period without a CM or PM, a regular maintenance (RM) is conducted at the end of that period to maintain the operation of the system. We propose a maintenance policy which prescribes a PM when the accumulated damage exceeds a pre-specified level δ (<ζ), or when the number of operation periods reaches N, whichever comes first. With the long-term average cost rate as an optimality criterion, we optimize the maintenance policy parameters δ⠎ and N⠎ and discuss some useful properties about them. It has been shown that a δ-based PM outperforms a N-based PM in terms of cost minimization. Numerical examples are presented to demonstrate the optimization of this class of maintenance policies.

Suggested Citation

  • Chien, Yu-Hung & Sheu, Shey-Huei & Zhang, Zhe George, 2012. "Optimal maintenance policy for a system subject to damage in a discrete time process," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 1-10.
  • Handle: RePEc:eee:reensy:v:103:y:2012:i:c:p:1-10
    DOI: 10.1016/j.ress.2012.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
    2. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, January.
    3. Sheu, Shey-Huei & Griffith, William S., 2002. "Extended block replacement policy with shock models and used items," European Journal of Operational Research, Elsevier, vol. 140(1), pages 50-60, July.
    4. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    5. Yu-Hung Chien & Chin-Chih Chang & Shey-Huei Sheu, 2010. "Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy," Annals of Operations Research, Springer, vol. 181(1), pages 723-744, December.
    6. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    7. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    8. Zhao, Xuejing & Fouladirad, Mitra & Bérenguer, Christophe & Bordes, Laurent, 2010. "Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 921-934.
    9. Kallen, M.J., 2011. "Modelling imperfect maintenance and the reliability of complex systems using superposed renewal processes," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 636-641.
    10. Bartholomew-Biggs, Michael & Zuo, Ming J. & Li, Xiaohu, 2009. "Modelling and optimizing sequential imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 53-62.
    11. Chien, Yu-Hung & Sheu, Shey-Huei & Zhang, Zhe George & Love, Ernie, 2006. "An extended optimal replacement model of systems subject to shocks," European Journal of Operational Research, Elsevier, vol. 175(1), pages 399-412, November.
    12. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.
    13. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    14. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    15. Chien, Yu-Hung & Sheu, Shey-Huei, 2006. "Extended optimal age-replacement policy with minimal repair of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 174(1), pages 169-181, October.
    16. Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
    17. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    18. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    19. Deloux, E. & Castanier, B. & Bérenguer, C., 2009. "Predictive maintenance policy for a gradually deteriorating system subject to stress," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 418-431.
    20. Fouladirad, Mitra & Grall, Antoine, 2011. "Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 611-618.
    21. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xufeng Zhao & Toshio Nakagawa, 2016. "Over-time and over-level replacement policies with random working cycles," Annals of Operations Research, Springer, vol. 244(1), pages 103-116, September.
    2. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.
    3. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    4. Tsai, Hsin-Nan & Sheu, Shey-Huei & Zhang, Zhe George, 2017. "A trivariate optimal replacement policy for a deteriorating system based on cumulative damage and inspections," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 122-135.
    5. Azadeh, A. & Asadzadeh, S.M. & Salehi, N. & Firoozi, M., 2015. "Condition-based maintenance effectiveness for series–parallel power generation system—A combined Markovian simulation model," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 357-368.
    6. Tsai, Hsin-Nan & Sheu, Shey-Huei & Zhang, Zhe George, 2017. "A trivariate optimal replacement policy for a deteriorating system based on cumulative damage and inspections," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 74-88.
    7. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    8. Shey-Huei Sheu & Tzu-Hsin Liu & Zhe-George Zhang & Hsin-Nan Tsai & Jung-Chih Chen, 2016. "Optimal two-threshold replacement policy in a cumulative damage model," Annals of Operations Research, Springer, vol. 244(1), pages 23-47, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Xufeng Zhao & Toshio Nakagawa, 2016. "Over-time and over-level replacement policies with random working cycles," Annals of Operations Research, Springer, vol. 244(1), pages 103-116, September.
    4. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    5. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    6. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    7. Estelle Deloux & Mitra Fouladirad & Christophe Bérenguer, 2016. "Health-and-usage-based maintenance policies for a partially observable deteriorating system," Journal of Risk and Reliability, , vol. 230(1), pages 120-129, February.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.
    10. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    11. Chien, Yu-Hung, 2008. "A general age-replacement model with minimal repair under renewing free-replacement warranty," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1046-1058, May.
    12. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    13. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    14. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    15. Olde Keizer, Minou & Teunter, Ruud, 2014. "Opportunistic condition-based maintenance and aperiodic inspections for a two-unit series system," Research Report 14033-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    17. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    18. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    19. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    20. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:103:y:2012:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.