IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v123y2017icp255-260.html
   My bibliography  Save this article

Life-cycle environmental and cost impacts of reusing fly ash

Author

Listed:
  • Huang, T.Y.
  • Chiueh, P.T.
  • Lo, S.L.

Abstract

Municipal solid waste incinerator (MSWI) fly ash, which includes residues collected from semidry scrubbers and bag filters, is a common hazardous waste that is difficult to recycle. We evaluate a novel application of the reuse of MSWI fly ash as a substitute alkali reagent in the Waelz process at an electric arc furnace (EAF) ash recycling plant because of its economical and environmental benefits. Life-cycle assessment and cost-benefit analysis were used to compare the application with other alternatives, namely, disposal in landfill after stabilization/solidification, reuse as part of raw material in a cement kiln, and reuse as part of aggregates in brick. Data from field experiments which were performed at a commercial EAF ash recycling plant in Taiwan were used for the evaluation. Our results show that the proposed application has the lowest environmental impact because the ZnO recycling of EAF ash is environmental friendly for reducing the excavation of zinc ore. In terms of economy, the higher sale price of the resulting cement product offers the best benefit among different applications in this research. After integration of environmental and economic effects, the application was still superior to the three alternatives. Although stabilization/solidification and subsequent disposal of MSWI fly ash is common practice, the scarcity of landfill sites and its volume leads to risks associated with operation of incinerators. Thus, finding multiple approaches to recycling of MSWI fly ash is necessary. This study provides a potential option for the recycling of MSWI fly ash and presents its environmental and economic benefits in management of fly ash from MSWIs.

Suggested Citation

  • Huang, T.Y. & Chiueh, P.T. & Lo, S.L., 2017. "Life-cycle environmental and cost impacts of reusing fly ash," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 255-260.
  • Handle: RePEc:eee:recore:v:123:y:2017:i:c:p:255-260
    DOI: 10.1016/j.resconrec.2016.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916301641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samolada, M.C. & Zabaniotou, A.A., 2014. "Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 34-43.
    2. Leme, Marcio Montagnana Vicente & Rocha, Mateus Henrique & Lora, Electo Eduardo Silva & Venturini, Osvaldo José & Lopes, Bruno Marciano & Ferreira, Cláudio Homero, 2014. "Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 8-20.
    3. Yang, Rebekah & Kang, Seunggu & Ozer, Hasan & Al-Qadi, Imad L., 2015. "Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 141-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Yuan & Hao Xu & Yanjun Liu & Kaiqi Tan & Yixiang Bao, 2023. "Synthesis and Environmental Applications of Nanoporous Materials Derived from Coal Fly Ash," Sustainability, MDPI, vol. 15(24), pages 1-29, December.
    2. Oluwafemi E. Ige & Oludolapo A. Olanrewaju, 2023. "Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa," Clean Technol., MDPI, vol. 5(3), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergeron, Francis C., 2016. "Multi-method assessment of household waste management in Geneva regarding sorting and recycling," Resources, Conservation & Recycling, Elsevier, vol. 115(C), pages 50-62.
    2. Marina Moreira & Ivan Felipe Silva Santos & Lilian Ferreira Freitas & Flávio Ferreira Freitas & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho, 2022. "Energy and economic analysis for a desalination plant powered by municipal solid waste incineration and natural gas in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1799-1826, February.
    3. Pablo Emilio Escamilla-García & Ana Lilia Coria-Páez & Francisco Pérez-Soto & Francisco Gutiérrez-Galicia & Carolina Caire & Blanca L. Martínez-Vargas, 2023. "Financial and Technical Evaluation of Energy Production by Biological and Thermal Treatments of MSW in Mexico City," Energies, MDPI, vol. 16(9), pages 1-14, April.
    4. Kwon, Gui-Rok & Woo, Seung H. & Lim, Seong-Rin, 2015. "Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 206-212.
    5. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    6. Gislaine Luvizão & Glicério Trichês, 2023. "Case Study on Life Cycle Assessment Applied to Road Restoration Methods," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    7. Toniolo, Sara & Pieretto, Chiara & Camana, Daniela, 2023. "A lifecycle-based indicator to support residual solid waste flow planning at the regional level," Utilities Policy, Elsevier, vol. 82(C).
    8. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    9. Zainorfarah Zainuddin & Mohammad Iranmanesh & Ming‐Lang Tseng & Behzad Foroughi & Tengku Adeline Adura Tengku Hamzah, 2021. "Clean development mechanism implementation: External and organizational factors drives expected business benefits," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 3444-3453, December.
    10. Margallo, M. & Dominguez-Ramos, A. & Aldaco, R. & Bala, A. & Fullana, P. & Irabien, A., 2014. "Environmental sustainability assessment in the process industry: A case study of waste-to-energy plants in Spain," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 144-155.
    11. Angelika Sita Ouedraogo & Robert Scott Frazier & Ajay Kumar, 2021. "Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes," Energies, MDPI, vol. 14(21), pages 1-15, October.
    12. Rodrigues, Livia Fernanda & Santos, Ivan Felipe Silva dos & Santos, Thereza Isabelle Silva dos & Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio, 2022. "Energy and economic evaluation of MSW incineration and gasification in Brazil," Renewable Energy, Elsevier, vol. 188(C), pages 933-944.
    13. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    14. de Castro e Silva, Hellen Luisa & Huamán Córdova, Maxi Estefany & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio & Silva Lora, Electo Eduardo & Moreira Santos, Afonso Henriques & dos Santos, Ivan, 2022. "Lab-scale and economic analysis of biogas production from swine manure," Renewable Energy, Elsevier, vol. 186(C), pages 350-365.
    15. Natalia Cavero Wintruff & José Leomar Fernandes, 2023. "A Review on Life Cycle Assessment of Pavements in Brazil: Evaluating Environmental Impacts and Pavement Performance Integrating the International Roughness Index," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    16. Ruoso, Ana Cristina & Dalla Nora, Macklini & Siluk, Julio Cezar Mairesse & Ribeiro, José Luis Duarte, 2022. "The impact of landfill operation factors on improving biogas generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Namho Cho & Mounir El Asmar & Mohammad Aldaaja, 2022. "An Analysis of the Impact of the Circular Economy Application on Construction and Demolition Waste in the United States of America," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    18. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    19. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    20. Santiago Alzate & Bonie Restrepo-Cuestas & Álvaro Jaramillo-Duque, 2019. "Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios," Resources, MDPI, vol. 8(1), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:123:y:2017:i:c:p:255-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.