IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v48y1997i1p49-61.html
   My bibliography  Save this article

Cluster goodness: A new measure of performance for cluster formation in the design of cellular manufacturing systems

Author

Listed:
  • Nair, G. Jayakrishnan
  • Narendran, T. T.

Abstract

No abstract is available for this item.

Suggested Citation

  • Nair, G. Jayakrishnan & Narendran, T. T., 1997. "Cluster goodness: A new measure of performance for cluster formation in the design of cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 48(1), pages 49-61, January.
  • Handle: RePEc:eee:proeco:v:48:y:1997:i:1:p:49-61
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(96)00067-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. King, John R, 1980. "Machine-component group formation in group technology," Omega, Elsevier, vol. 8(2), pages 193-199.
    2. Ravi Kumar, K. & Kusiak, Andrew & Vannelli, Anthony, 1986. "Grouping of parts and components in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 24(3), pages 387-397, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noriyoshi Sukegawa & Yoshitsugu Yamamoto & Liyuan Zhang, 2013. "Lagrangian relaxation and pegging test for the clique partitioning problem," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 363-391, December.
    2. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    3. O. Mahesh & G. Srinivasan, 2006. "Multi-objectives for incremental cell formation problem," Annals of Operations Research, Springer, vol. 143(1), pages 157-170, March.
    4. Rogers, David F. & Kulkarni, Shailesh S., 2005. "Optimal bivariate clustering and a genetic algorithm with an application in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 160(2), pages 423-444, January.
    5. Mohamed, Zubair M. & Kumar, Ashok & Motwani, Jaideep, 1999. "An improved part grouping model for minimizing makespan in FMS," European Journal of Operational Research, Elsevier, vol. 116(1), pages 171-182, July.
    6. Stawowy, Adam, 2006. "Evolutionary strategy for manufacturing cell design," Omega, Elsevier, vol. 34(1), pages 1-18, January.
    7. Logendran, Rasaratnam & Talkington, Diane, 1997. "Analysis of cellular and functional manufacturing systems in the presence of machine breakdown," International Journal of Production Economics, Elsevier, vol. 53(3), pages 239-256, December.
    8. Manash Hazarika, 2023. "An improved genetic algorithm for the machine-part cell formation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 206-219, February.
    9. Kulkarni, Uday R. & Kiang, Melody Y., 1995. "Dynamic grouping of parts in flexible manufacturing systems -- a self-organizing neural networks approach," European Journal of Operational Research, Elsevier, vol. 84(1), pages 192-212, July.
    10. John G. Klincewicz & Arvind Rajan, 1994. "Using grasp to solve the component grouping problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(7), pages 893-912, December.
    11. Wu, Tai-Hsi & Chang, Chin-Chih & Yeh, Jinn-Yi, 2009. "A hybrid heuristic algorithm adopting both Boltzmann function and mutation operator for manufacturing cell formation problems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 669-688, August.
    12. Juan Díaz & Dolores Luna & Ricardo Luna, 2012. "A GRASP heuristic for the manufacturing cell formation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 679-706, October.
    13. Ahmadi, Reza H. & Matsuo, Hirofumi, 2000. "A mini-line approach for pull production," European Journal of Operational Research, Elsevier, vol. 125(2), pages 340-358, September.
    14. Ben-Arieh, David & Sreenivasan, Ravi, 1999. "Information analysis in a distributed dynamic group technology method," International Journal of Production Economics, Elsevier, vol. 60(1), pages 427-432, April.
    15. Yin, Liang & He, Ming-Li & Xie, Wen-Bo & Yuan, Fei & Chen, Duan-Bing & Su, Yang, 2018. "A quantitative model of universalization, serialization and modularization on equipment systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 359-366.
    16. Spiliopoulos, K. & Sofianopoulou, S., 1998. "An optimal tree search method for the manufacturing systems cell formation problem," European Journal of Operational Research, Elsevier, vol. 105(3), pages 537-551, March.
    17. Gary Klein & Jay E. Aronson, 1991. "Optimal clustering: A model and method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 447-461, June.
    18. Wu, Tai-Hsi & Chung, Shu-Hsing & Chang, Chin-Chih, 2010. "A water flow-like algorithm for manufacturing cell formation problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 346-360, September.
    19. Berna H. Ulutas, 2019. "An immune system based algorithm for cell formation problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2835-2852, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:48:y:1997:i:1:p:49-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.