IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v228y2020ics0925527320302395.html
   My bibliography  Save this article

Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study

Author

Listed:
  • Lohmer, Jacob
  • Bugert, Niels
  • Lasch, Rainer

Abstract

Resilience enables supply chains to reduce their proneness to disruptions and recover faster. Many existing strategies to strengthen the resilience of supply chains are facilitated by the use of digital technology. Blockchain, as one of the promising innovative technologies, enables a transparent, secure, and timely data exchange and automation via smart contracts. In this paper, we discuss the impact of blockchain technology on supply chain risk management and, in particular, on supply chain resilience. We identify potential risk-related blockchain application scenarios and examine their impact on the existing resilience strategies. We explore the impact of the most promising applications with respect to resilience by using an agent-based simulation model of a complex supply network affected by disruptions. The theoretical analysis reveals a promotion of supply chain resilience strategies, especially if smart contracts are used for risk-related collaboration. The simulation study indicates an increase in resilience if the underlying collaboration is based on time-efficient processes: The propagation of disruptions, the network recovery time, and total costs can be substantially reduced. However, depending on the duration of the disruption, negative effects can occur if process efficiency is insufficient. From our investigations, we derive insights for managers who are interested in practical implementation.

Suggested Citation

  • Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:proeco:v:228:y:2020:i:c:s0925527320302395
    DOI: 10.1016/j.ijpe.2020.107882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320302395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2020. "Reconfigurable supply chain: the X-network," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4138-4163, July.
    2. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    3. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    4. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    5. Yilmaz, Ibrahim & Yoon, Sang Won & Seok, Hyesung, 2017. "A framework and algorithm for fair demand and capacity sharing in collaborative networks," International Journal of Production Economics, Elsevier, vol. 193(C), pages 137-147.
    6. Min, Hokey, 2019. "Blockchain technology for enhancing supply chain resilience," Business Horizons, Elsevier, vol. 62(1), pages 35-45.
    7. Choi, Tsan-Ming & Feng, Lipan & Li, Rong, 2020. "Information disclosure structure in supply chains with rental service platforms in the blockchain technology era," International Journal of Production Economics, Elsevier, vol. 221(C).
    8. Haobin Li & Giulia Pedrielli & Loo Hay Lee & Ek Peng Chew, 2017. "Enhancement of supply chain resilience through inter-echelon information sharing," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 260-285, June.
    9. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    10. Volodymyr Babich & Gilles Hilary, 2020. "OM Forum—Distributed Ledgers and Operations: What Operations Management Researchers Should Know About Blockchain Technology," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 223-245, March.
    11. Albert Munoz & Michelle Dunbar, 2015. "On the quantification of operational supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6736-6751, November.
    12. Brusset, Xavier & Teller, Christoph, 2017. "Supply chain capabilities, risks, and resilience," International Journal of Production Economics, Elsevier, vol. 184(C), pages 59-68.
    13. Ledwoch, Anna & Yasarcan, Hakan & Brintrup, Alexandra, 2018. "The moderating impact of supply network topology on the effectiveness of risk management," International Journal of Production Economics, Elsevier, vol. 197(C), pages 13-26.
    14. Benjamin R. Tukamuhabwa & Mark Stevenson & Jerry Busby & Marta Zorzini, 2015. "Supply chain resilience: definition, review and theoretical foundations for further study," International Journal of Production Research, Taylor & Francis Journals, vol. 53(18), pages 5592-5623, September.
    15. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    16. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    17. Dmitry Ivanov, 2018. "Revealing interfaces of supply chain resilience and sustainability: a simulation study," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3507-3523, May.
    18. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    19. Baris Tan, 2006. "Modelling and analysis of a network organization for cooperation of manufacturers on production capacity," Mathematical Problems in Engineering, Hindawi, vol. 2006, pages 1-24, March.
    20. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    21. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    22. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    23. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
    24. Cao, Mei & Zhang, Qingyu, 2010. "Supply chain collaborative advantage: A firm's perspective," International Journal of Production Economics, Elsevier, vol. 128(1), pages 358-367, November.
    25. Cardoso, Sónia R. & Paula Barbosa-Póvoa, Ana & Relvas, Susana & Novais, Augusto Q., 2015. "Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty," Omega, Elsevier, vol. 56(C), pages 53-73.
    26. Moghaddam, Mohsen & Nof, Shimon Y., 2016. "Real-time optimization and control mechanisms for collaborative demand and capacity sharing," International Journal of Production Economics, Elsevier, vol. 171(P4), pages 495-506.
    27. Mehrdokht Pournader & Yangyan Shi & Stefan Seuring & S.C. Lenny Koh, 2020. "Blockchain applications in supply chains, transport and logistics: a systematic review of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2063-2081, April.
    28. Yu, Wantao & Jacobs, Mark A. & Chavez, Roberto & Yang, Jiehui, 2019. "Dynamism, disruption orientation, and resilience in the supply chain and the impacts on financial performance: A dynamic capabilities perspective," International Journal of Production Economics, Elsevier, vol. 218(C), pages 352-362.
    29. Alexandre Dolgui & Dmitry Ivanov & Semyon Potryasaev & Boris Sokolov & Marina Ivanova & Frank Werner, 2020. "Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2184-2199, April.
    30. Dmitry Ivanov, 2018. "Structural Dynamics and Resilience in Supply Chain Risk Management," International Series in Operations Research and Management Science, Springer, number 978-3-319-69305-7, September.
    31. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    32. Choi, Tsan-Ming & Wen, Xin & Sun, Xuting & Chung, Sai-Ho, 2019. "The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 178-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    2. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    3. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    4. Weili Yin & Wenxue Ran, 2021. "Theoretical Exploration of Supply Chain Viability Utilizing Blockchain Technology," Sustainability, MDPI, vol. 13(15), pages 1-25, July.
    5. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    6. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    7. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    8. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    9. Zhang, Tianyu & Dong, Peiwu & Chen, Xiangfeng & Gong, Yu, 2023. "The impacts of blockchain adoption on a dual-channel supply chain with risk-averse members," Omega, Elsevier, vol. 114(C).
    10. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. João Pires Ribeiro & Ana Paula F. D. Barbosa-Póvoa, 2023. "A responsiveness metric for the design and planning of resilient supply chains," Annals of Operations Research, Springer, vol. 324(1), pages 1129-1181, May.
    12. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    13. Wong, Christina W.Y. & Lirn, Taih-Cherng & Yang, Ching-Chiao & Shang, Kuo-Chung, 2020. "Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization," International Journal of Production Economics, Elsevier, vol. 226(C).
    14. Soumyadeb Chowdhury & Oscar Rodriguez-Espindola & Prasanta Dey & Pawan Budhwar, 2023. "Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK," Annals of Operations Research, Springer, vol. 327(1), pages 539-574, August.
    15. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    16. Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
    17. Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    19. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    20. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:228:y:2020:i:c:s0925527320302395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.