IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v170y2015ipcp838-849.html
   My bibliography  Save this article

Diagonal cross-aisles in unit load warehouses to increase handling performance

Author

Listed:
  • Bortolini, Marco
  • Faccio, Maurizio
  • Gamberi, Mauro
  • Manzini, Riccardo

Abstract

This work proposes a non-conventional easy-applicable configuration for unit load (UL) warehouses, with the aim of improving the handling performance in terms of the travelled distance. The impact of the adoption of one or more straight diagonal cross-aisles within a traditional warehouse is investigated under single command operations. The closed-form of the mean travel time with random storage assignment of the ULs is provided and the design parameters of such a warehouse are evaluated. In the optimal configuration, the travelled distance savings range from 7% to 17%. The loss of storage area related to the presence of the diagonal cross-aisles is, also, evaluated, leading to define the profitability regions, best balance between the distance saving and the storage area loss, driving the choice of the most effective number of diagonal cross-aisles to include within the storage system.

Suggested Citation

  • Bortolini, Marco & Faccio, Maurizio & Gamberi, Mauro & Manzini, Riccardo, 2015. "Diagonal cross-aisles in unit load warehouses to increase handling performance," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 838-849.
  • Handle: RePEc:eee:proeco:v:170:y:2015:i:pc:p:838-849
    DOI: 10.1016/j.ijpe.2015.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315002571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yugang Yu & René B.M. Koster & Xiaolong Guo, 2015. "Class-Based Storage with a Finite Number of Items: Using More Classes is not Always Better," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1235-1247, August.
    2. Rouwenhorst, B., 1999. "Warehouse design and control: framework and literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 285, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Carl Kallina & Jeffrey Lynn, 1976. "Application of the Cube-Per-Order Index Rule for Stock Location in a Distribution Warehouse," Interfaces, INFORMS, vol. 7(1), pages 37-46, November.
    4. Marc Goetschalckx & H. Donald Ratliff, 1990. "Shared Storage Policies Based on the Duration Stay of Unit Loads," Management Science, INFORMS, vol. 36(9), pages 1120-1132, September.
    5. Ömer Öztürkoğlu & Kevin Gue & Russell Meller, 2012. "Optimal unit-load warehouse designs for single-command operations," IISE Transactions, Taylor & Francis Journals, vol. 44(6), pages 459-475.
    6. Kevin Gue & Russell Meller, 2009. "Aisle configurations for unit-load warehouses," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 171-182.
    7. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    8. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    9. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    10. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    11. Gue, Kevin R. & Ivanović, Goran & Meller, Russell D., 2012. "A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 795-806.
    12. Öztürkoğlu, Ö. & Gue, K.R. & Meller, R.D., 2014. "A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points," European Journal of Operational Research, Elsevier, vol. 236(1), pages 382-394.
    13. Pohl, Letitia M. & Meller, Russell D. & Gue, Kevin R., 2009. "An analysis of dual-command operations in common warehouse designs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 367-379, May.
    14. Kirby Clark & Russell Meller, 2013. "Incorporating vertical travel into non-traditional cross aisles for unit-load warehouse designs," IISE Transactions, Taylor & Francis Journals, vol. 45(12), pages 1322-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeliz Kocaman & Ömer Öztürkoğlu & Şevkinaz Gümüşoğlu, 2021. "Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 323-355, March.
    2. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    3. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, Marcus & Lim, Yun Fong, 2019. "How to optimize storage classes in a unit-load warehouse," European Journal of Operational Research, Elsevier, vol. 278(1), pages 186-201.
    2. Yeliz Kocaman & Ömer Öztürkoğlu & Şevkinaz Gümüşoğlu, 2021. "Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 323-355, March.
    3. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    4. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    5. Öztürkoğlu, Ö. & Gue, K.R. & Meller, R.D., 2014. "A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points," European Journal of Operational Research, Elsevier, vol. 236(1), pages 382-394.
    6. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    8. Rakesh Venkitasubramony & Gajendra K. Adil, 2016. "Analytical models for pick distances in fishbone warehouse based on exact distance contour," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4305-4326, July.
    9. Shahab Derhami & Jeffrey S. Smith & Kevin R. Gue, 2017. "Optimising space utilisation in block stacking warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6436-6452, November.
    10. Cardona, Luis F. & Soto, Diego F. & Rivera, Leonardo & Martínez, Hector J., 2015. "Detailed design of fishbone warehouse layouts with vertical travel," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 825-837.
    11. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    12. Nima Zaerpour & Amir Gharehgozli & René De Koster, 2019. "Vertical Expansion: A Solution for Future Container Terminals," Transportation Science, INFORMS, vol. 53(5), pages 1235-1251, September.
    13. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    14. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    16. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    17. Subir S. Rao & Gajendra K. Adil, 2017. "Analytical models for a new turnover-based hybrid storage policy in unit-load warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 327-346, January.
    18. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    19. Zhuxi Chen & Xiaoping Li & Jatinder N.D. Gupta, 2016. "Sequencing the storages and retrievals for flow-rack automated storage and retrieval systems with duration-of-stay storage policy," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 984-998, February.
    20. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:170:y:2015:i:pc:p:838-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.