IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v133y2011i1p212-215.html
   My bibliography  Save this article

Batch quantities when forecasts are improving

Author

Listed:
  • Axsäter, Sven

Abstract

This paper considers the choice of initial batch quantities when demand forecasts are improving. We assume that the standard deviation of the demand per period is decreasing exponentially and approaching a long-run value. A discrete time stochastic single-level inventory model is considered. There are traditional holding and backorder costs as well as an ordering cost. The ordering periods must be determined in advance, and we wish to determine a suitable schedule.

Suggested Citation

  • Axsäter, Sven, 2011. "Batch quantities when forecasts are improving," International Journal of Production Economics, Elsevier, vol. 133(1), pages 212-215, September.
  • Handle: RePEc:eee:proeco:v:133:y:2011:i:1:p:212-215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527310001180
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    2. Ding, Huiping & Grubbstrom, Robert W., 1991. "On the optimization of initial order quantities," International Journal of Production Economics, Elsevier, vol. 23(1-3), pages 79-88, October.
    3. Grubbstrom, Robert W. & Ding, Huiping, 1993. "Initial order quantities in a multistage production system with backlogging," International Journal of Production Economics, Elsevier, vol. 30(1), pages 153-166, July.
    4. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Shine-Der & Lan, Shu-Chuan, 2013. "Production lot sizing with a secondary outsourcing facility," International Journal of Production Economics, Elsevier, vol. 141(1), pages 414-424.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    2. Axsäter, Sven, 2013. "Initiation of an inventory control system when the demand starts at a given time," International Journal of Production Economics, Elsevier, vol. 143(2), pages 553-556.
    3. Chuen-Teck See & Melvyn Sim, 2010. "Robust Approximation to Multiperiod Inventory Management," Operations Research, INFORMS, vol. 58(3), pages 583-594, June.
    4. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    5. Fernando Alvarez & Francesco Lippi & Roberto Robatto, 2019. "Cost of Inflation in Inventory Theoretical Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 206-226, April.
    6. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Dario Bauso & Rosario Maggistro & Raffaele Pesenti, 2020. "Robust Sub-optimality of Linear-Saturated Control via Quadratic Zero-Sum Differential Games," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1109-1125, March.
    8. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    9. Qing Li & Peiwen Yu, 2012. "Technical Note---On the Quasiconcavity of Lost-Sales Inventory Models with Fixed Costs," Operations Research, INFORMS, vol. 60(2), pages 286-291, April.
    10. Zhang, Jie & Xie, Weijun & Sarin, Subhash C., 2021. "Robust multi-product newsvendor model with uncertain demand and substitution," European Journal of Operational Research, Elsevier, vol. 293(1), pages 190-202.
    11. Van-Anh Truong, 2014. "Approximation Algorithm for the Stochastic Multiperiod Inventory Problem via a Look-Ahead Optimization Approach," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1039-1056, November.
    12. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    13. Gullu, Refik, 1998. "Base stock policies for production/inventory problems with uncertain capacity levels," European Journal of Operational Research, Elsevier, vol. 105(1), pages 43-51, February.
    14. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    15. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    16. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    17. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    18. Yonit Barron & Dror Hermel, 2017. "Shortage decision policies for a fluid production model with MAP arrivals," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3946-3969, July.
    19. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    20. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:133:y:2011:i:1:p:212-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.