IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v127y2010i1p121-128.html
   My bibliography  Save this article

A genetic local search algorithm for minimizing total flowtime in the permutation flowshop scheduling problem

Author

Listed:
  • Tseng, Lin-Yu
  • Lin, Ya-Tai

Abstract

Recently, the flowshop scheduling problem to minimize total flowtime has attracted more attention from researchers. In this paper, a genetic local search algorithm is proposed to solve this problem. The proposed algorithm hybridizes the genetic algorithm and the tabu search. It employs the genetic algorithm to do the global search and the tabu search to do the local search. The orthogonal-array-based crossover is utilized to enhance the capability of intensification. Also, a novel orthogonal-array-based mutation is proposed, in order to add capability of intensification to the traditional mutation operator. The performance of the proposed genetic local search algorithm is very competitive. It improved 54 out of 90 current best solutions reported in the literature for short-term search, and it also improved 18 out of 20 current best solutions reported in the literature for long-term search.

Suggested Citation

  • Tseng, Lin-Yu & Lin, Ya-Tai, 2010. "A genetic local search algorithm for minimizing total flowtime in the permutation flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 127(1), pages 121-128, September.
  • Handle: RePEc:eee:proeco:v:127:y:2010:i:1:p:121-128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00183-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    2. Allahverdi, Ali & Aldowaisan, Tariq, 2002. "New heuristics to minimize total completion time in m-machine flowshops," International Journal of Production Economics, Elsevier, vol. 77(1), pages 71-83, May.
    3. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    4. Taillard, E., 1990. "Some efficient heuristic methods for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 47(1), pages 65-74, July.
    5. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.
    6. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.
    7. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    8. Rajendran, Chandrasekharan & Ziegler, Hans, 1997. "An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 103(1), pages 129-138, November.
    9. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    10. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Ada & Chabrol, Michelle & Gourgand, Michel & Wang, Yuan, 2012. "Scheduling multiple robots in a no-wait re-entrant robotic flowshop," International Journal of Production Economics, Elsevier, vol. 135(1), pages 199-208.
    2. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
    3. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    4. Ławrynowicz Anna, 2011. "Genetic Algorithms for Solving Scheduling Problems in Manufacturing Systems," Foundations of Management, Sciendo, vol. 3(2), pages 7-26, January.
    5. Cheng, T.C.E. & Wu, Chin-Chia & Chen, Juei-Chao & Wu, Wen-Hsiang & Cheng, Shuenn-Ren, 2013. "Two-machine flowshop scheduling with a truncated learning function to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 141(1), pages 79-86.
    6. Paz Perez-Gonzalez & Jose M. Framinan, 2018. "Single machine interfering jobs problem with flowtime objective," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 953-972, June.
    7. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    2. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    3. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    4. Framinan, J. M. & Leisten, R., 2003. "An efficient constructive heuristic for flowtime minimisation in permutation flow shops," Omega, Elsevier, vol. 31(4), pages 311-317, August.
    5. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    6. Zhang, Yi & Li, Xiaoping & Wang, Qian, 2009. "Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization," European Journal of Operational Research, Elsevier, vol. 196(3), pages 869-876, August.
    7. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    8. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.
    9. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    10. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    11. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    12. M S Nagano & J V Moccellin, 2008. "Reducing mean flow time in permutation flow shop," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 939-945, July.
    13. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    14. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    15. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    16. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    17. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    18. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    19. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    20. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:127:y:2010:i:1:p:121-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.