IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v615y2023ics0378437123001644.html
   My bibliography  Save this article

A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process

Author

Listed:
  • Laaribi, Aziz
  • Boukanjime, Brahim
  • El Khalifi, Mohamed
  • Bouggar, Driss
  • El Fatini, Mohamed

Abstract

The aim of this work is to study a new stochastic SIRS epidemic model that includes the mean-reverting Ornstein–Uhlenbeck process and a general incidence rate. First, we prove the global existence and positivity of the solution by using Lyapunov functions. Second, we analytically make out the stochastic epidemic threshold T̃0S which pilots the extinction and persistence in mean of the disease. We have proven that the disease extinguishes when T̃0S<1. Otherwise, if T̃0S>1, then disease is persistent in mean. For the critical case T̃0S=1, we have shown that the disease dies out by using an approach involving some appropriate stopping times. Finally, we present a series of numerical simulations to confirm the feasibility and correctness of the theoretical analysis results.

Suggested Citation

  • Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
  • Handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001644
    DOI: 10.1016/j.physa.2023.128609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001644
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yongli & Jiao, Jianjun & Gui, Zhanji & Liu, Yuting & Wang, Weiming, 2018. "Environmental variability in a stochastic epidemic model," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 210-226.
    2. Boukanjime, Brahim & El Fatini, Mohamed & Laaribi, Aziz & Taki, Regragui, 2019. "Analysis of a deterministic and a stochastic epidemic model with two distinct epidemics hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. El Fatini, Mohamed & Lahrouz, Aadil & Pettersson, Roger & Settati, Adel & Taki, Regragui, 2018. "Stochastic stability and instability of an epidemic model with relapse," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 326-341.
    4. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    5. Boukanjime, Brahim & El Fatini, Mohamed, 2019. "A stochastic Hepatitis B epidemic model driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 796-806.
    6. S. P. Rajasekar & M. Pitchaimani & Quanxin Zhu & Kaibo Shi, 2021. "Exploring the Stochastic Host-Pathogen Tuberculosis Model with Adaptive Immune Response," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, June.
    7. Boukanjime, Brahim & Caraballo, Tomás & El Fatini, Mohamed & El Khalifi, Mohamed, 2020. "Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. El Fatini, Mohamed & El Khalifi, Mohamed & Gerlach, Richard & Laaribi, Aziz & Taki, Regragui, 2019. "Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    9. Caraballo, Tomás & Fatini, Mohamed El & Khalifi, Mohamed El & Gerlach, Richard & Pettersson, Roger, 2020. "Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    11. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukanjime, Brahim & Caraballo, Tomás & El Fatini, Mohamed & El Khalifi, Mohamed, 2020. "Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. El Attouga, Sanae & Bouggar, Driss & El Fatini, Mohamed & Hilbert, Astrid & Pettersson, Roger, 2023. "Lévy noise with infinite activity and the impact on the dynamic of an SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Settati, A. & Lahrouz, A. & Assadouq, A. & El Fatini, M. & El Jarroudi, M. & Wang, K., 2020. "The impact of nonlinear relapse and reinfection to derive a stochastic threshold for SIRI epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    5. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    6. Tuerxun, Nafeisha & Wen, Buyu & Teng, Zhidong, 2021. "The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 888-912.
    7. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    9. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    11. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Liu, Qun & Jiang, Daqing, 2020. "Stationary distribution of a stochastic cholera model with imperfect vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    14. Huo, Hai-Feng & Jing, Shuang-Lin & Wang, Xun-Yang & Xiang, Hong, 2020. "Modeling and analysis of a H1N1 model with relapse and effect of Twitter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    15. Tian, Baodan & Zhang, Yong & Li, Jiamei, 2020. "Stochastic perturbations for a duopoly Stackelberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    18. Caraballo, Tomás & Fatini, Mohamed El & Khalifi, Mohamed El & Gerlach, Richard & Pettersson, Roger, 2020. "Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    19. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    20. El Fatini, Mohamed & Sekkak, Idriss & Laaribi, Aziz, 2019. "A threshold of a delayed stochastic epidemic model with Crowly–Martin functional response and vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 151-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.