IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v520y2019icp151-160.html
   My bibliography  Save this article

A threshold of a delayed stochastic epidemic model with Crowly–Martin functional response and vaccination

Author

Listed:
  • El Fatini, Mohamed
  • Sekkak, Idriss
  • Laaribi, Aziz

Abstract

In this paper, we study a delayed stochastic SIR epidemic model with Crowly–Martin functional response and vaccination. First we prove the existence and the uniqueness of the positive solution. Therefore, we establish a stochastic threshold Rs as a sufficient condition for the extinction and persistence in mean of the stochastic epidemic system. Finally, numerical simulations are presented to support our theoretical results.

Suggested Citation

  • El Fatini, Mohamed & Sekkak, Idriss & Laaribi, Aziz, 2019. "A threshold of a delayed stochastic epidemic model with Crowly–Martin functional response and vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 151-160.
  • Handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:151-160
    DOI: 10.1016/j.physa.2019.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300093
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar, 2018. "Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2010-2018.
    2. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    3. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    4. Liu, Qun & Chen, Qingmei & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 115-125.
    5. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    6. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz, 2018. "A stochastic threshold for an epidemic model with Beddington–DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 312-320.
    7. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    8. Liu, Qun & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 140-147.
    9. El Fatini, Mohamed & Lahrouz, Aadil & Pettersson, Roger & Settati, Adel & Taki, Regragui, 2018. "Stochastic stability and instability of an epidemic model with relapse," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 326-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M, Pitchaimani & M, Brasanna Devi, 2021. "Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Liu, Fangfang & Wei, Fengying, 2022. "An epidemic model with Beddington–DeAngelis functional response and environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Caraballo, Tomás & Fatini, Mohamed El & Khalifi, Mohamed El & Gerlach, Richard & Pettersson, Roger, 2020. "Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M, Pitchaimani & M, Brasanna Devi, 2021. "Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz, 2018. "A stochastic threshold for an epidemic model with Beddington–DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 312-320.
    3. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    6. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Wei, Xiang, 2017. "A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 198-208.
    7. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    8. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Liu, Liya & Hu, Jingwei, 2020. "Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    10. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    11. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    12. Liu, Qun & Jiang, Daqing & Shi, Ningzhong, 2018. "Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 310-325.
    13. Verma, Tina & Gupta, Arvind Kumar, 2020. "Mean-field dispersal induced synchrony and stability in an epidemic model under patchy environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    14. Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    15. Wei, Fengying & Chen, Lihong, 2020. "Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    17. Rajasekar, S.P. & Pitchaimani, M., 2019. "Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 207-221.
    18. Nguyen, Dang H. & Nguyen, Nhu N. & Yin, George, 2021. "Stochastic functional Kolmogorov equations, I: Persistence," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 319-364.
    19. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    20. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:151-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.