IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v599y2022ics0378437122003338.html
   My bibliography  Save this article

Threshold dynamics in a stochastic chemostat model under regime switching

Author

Listed:
  • Wang, Liang
  • Jiang, Daqing
  • Feng, Tao

Abstract

A stochastic chemostat model in random environments that is driven by Brownian motions and subjected to Markov regime switching is considered. The new break-even concentration, i.e., critical value between persistence in mean and extinction is explored for the microorganism species. Moreover, sufficient conditions for ergodicity and positive recurrence is established by using stochastic Lyapunov analysis. Numerical simulations are accomplished to verify the analytical results.

Suggested Citation

  • Wang, Liang & Jiang, Daqing & Feng, Tao, 2022. "Threshold dynamics in a stochastic chemostat model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  • Handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003338
    DOI: 10.1016/j.physa.2022.127454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003338
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campillo, F. & Joannides, M. & Larramendy-Valverde, I., 2011. "Stochastic modeling of the chemostat," Ecological Modelling, Elsevier, vol. 222(15), pages 2676-2689.
    2. Emel Savku & Gerhard-Wilhelm Weber, 2018. "A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 696-721, November.
    3. Peng, Shige & Zhu, Xuehong, 2006. "Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 370-380, March.
    4. Weber, Gerhard-Wilhelm & Defterli, Ozlem & Alparslan Gök, SIrma Zeynep & Kropat, Erik, 2011. "Modeling, inference and optimization of regulatory networks based on time series data," European Journal of Operational Research, Elsevier, vol. 211(1), pages 1-14, May.
    5. Khasminskii, R.Z. & Zhu, C. & Yin, G., 2007. "Stability of regime-switching diffusions," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1037-1051, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jianxin & Zheng, Junhao & Zhang, Tonghua & Hou, Rui & Zhou, Yong-wu, 2022. "Dynamical complexity of pricing and green level for a dyadic supply chain with capital constraint," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 1-21.
    2. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    3. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    4. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    5. Peng Luo & Falei Wang, 2019. "Viability for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 32(1), pages 395-416, March.
    6. Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
    7. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    8. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Liu, Qun & Chen, Qingmei, 2015. "Dynamics of stochastic delay Lotka–Volterra systems with impulsive toxicant input and Lévy noise in polluted environments," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 52-67.
    10. Romuald Elie & Emma Hubert & Thibaut Mastrolia & Dylan Possamai, 2019. "Mean-field moral hazard for optimal energy demand response management," Papers 1902.10405, arXiv.org, revised Mar 2020.
    11. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    12. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    13. Lucia Reis Peixoto Roselli & Leydiana de Sousa Pereira & Anderson Lucas Carneiro de Lima Silva & Adiel Teixeira Almeida & Danielle Costa Morais & Ana Paula Cabral Seixas Costa, 2020. "Neuroscience experiment applied to investigate decision-maker behavior in the tradeoff elicitation procedure," Annals of Operations Research, Springer, vol. 289(1), pages 67-84, June.
    14. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    15. Liu, Qun & Jiang, Daqing, 2020. "Dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and amelioration," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    17. Sheng Wang & Linshan Wang & Tengda Wei, 2017. "Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 715-725, September.
    18. Wang, Liang & Jiang, Daqing, 2017. "Periodic solution for the stochastic chemostat with general response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 378-385.
    19. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 414-426.
    20. Zhao, Dianli, 2015. "A remark on one non-autonomous stochastic Gompertz model with delay," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 369-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.