IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i3d10.1007_s11009-016-9509-4.html
   My bibliography  Save this article

Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise

Author

Listed:
  • Sheng Wang

    (Ocean University of China)

  • Linshan Wang

    (Ocean University of China)

  • Tengda Wei

    (Ocean University of China)

Abstract

In this paper, well-posedness and asymptotic behaviors for a predator-prey system with Lévy noise are studied by using stochastic analytical techniques. Firstly, the existence and uniqueness of positive global solution with positive initial value is proved. Then, stochastic permanence for the system is investigated. Finally, persistence in mean and extinction for the system are discussed and some numerical simulations are provided to support our results.

Suggested Citation

  • Sheng Wang & Linshan Wang & Tengda Wei, 2017. "Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 715-725, September.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:3:d:10.1007_s11009-016-9509-4
    DOI: 10.1007/s11009-016-9509-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9509-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9509-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Shige & Zhu, Xuehong, 2006. "Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 370-380, March.
    2. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    3. Liu, Meng & Deng, Meiling & Du, Bo, 2015. "Analysis of a stochastic logistic model with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 169-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sheng & Hu, Guixin & Wei, Tengda & Wang, Linshan, 2020. "Permanence of hybrid competitive Lotka–Volterra system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Wang, Sheng & Wang, Linshan & Wei, Tengda, 2018. "Permanence and asymptotic behaviors of stochastic predator–prey system with Markovian switching and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 294-311.
    3. Wu, Jian, 2018. "Stability of a three-species stochastic delay predator–prey system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 492-505.
    4. Wu, Jian, 2020. "Dynamics of a two-predator one-prey stochastic delay model with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    6. Jaouad Danane & Delfim F. M. Torres, 2023. "Three-Species Predator–Prey Stochastic Delayed Model Driven by Lévy Jumps and with Cooperation among Prey Species," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    7. Gao, Hongjun & Wang, Ying, 2019. "Stochastic mutualism model under regime switching with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 355-375.
    8. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    9. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    10. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    12. Liu, Meng & Bai, Chuanzhi, 2016. "Dynamics of a stochastic one-prey two-predator model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 308-321.
    13. Xiangjun Dai & Hui Jiao & Jianjun Jiao & Qi Quan, 2023. "Survival Analysis of a Predator–Prey Model with Seasonal Migration of Prey Populations between Breeding and Non-Breeding Regions," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    14. Yang, Fen-Fen & Yuan, Chenggui, 2022. "Comparison theorem for neutral stochastic functional differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 184(C).
    15. Peng Luo & Falei Wang, 2019. "Viability for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 32(1), pages 395-416, March.
    16. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Dec 2023.
    17. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal stopping of Gauss-Markov bridges," Papers 2211.05835, arXiv.org, revised Dec 2023.
    18. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    19. Liu, Qun & Chen, Qingmei, 2015. "Dynamics of stochastic delay Lotka–Volterra systems with impulsive toxicant input and Lévy noise in polluted environments," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 52-67.
    20. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:3:d:10.1007_s11009-016-9509-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.