IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121005057.html
   My bibliography  Save this article

Stability of inverter-interfaced power systems with multi-scale-free properties

Author

Listed:
  • Yi, Wenting
  • Liu, Tao
  • Hill, David J.

Abstract

Scale-free networks are proven to have many distinct properties and numerous statistical studies have shown that most large power systems have the scale-free topology. However, the overall system behavior is also constrained by node dynamics, of which the interaction effects with network topology remain unknown. Here, we investigate the individual and mutual effects of network degree distribution, with two system dynamic parameters, on system small-disturbance angle stability. We show that network degree distribution and active power injection distribution are critical in determining system small-disturbance angle stability while frequency coefficient shows relatively less significant influence. Further, the scale-free level for degree distribution positively interacts with active power injection distribution on the overall system behavior. Consequently, not only network topology but also system dynamic parameters and, importantly, their synergistic effects matter in determining system behavior. Based on the results, we further provide guidance for the coordination of the various parameters to improve system small-disturbance angle stability.

Suggested Citation

  • Yi, Wenting & Liu, Tao & Hill, David J., 2021. "Stability of inverter-interfaced power systems with multi-scale-free properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121005057
    DOI: 10.1016/j.physa.2021.126232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005057
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    2. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Pang & Cheng Hu & Juan Yu & Haijun Jiang, 2022. "Fixed-Time Synchronization for Fuzzy-Based Impulsive Complex Networks," Mathematics, MDPI, vol. 10(9), pages 1-16, May.
    2. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    3. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    5. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    6. Claudio M. Rocco & Kash Barker & Jose Moronta, 2022. "Determining the best algorithm to detect community structures in networks: application to power systems," Environment Systems and Decisions, Springer, vol. 42(2), pages 251-264, June.
    7. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    8. Goddet, Etienne & Retière, Nicolas & Stojanović, Vojislav & Dieudonné, Anca & Genoulaz, Jérôme & Guichon, Jean-Michel, 2019. "Maximizing the algebraic connectivity of meshed electrical pathways used as current return network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 18-31.
    9. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    10. D'Acci, Luca S., 2023. "Is housing price distribution across cities, scale invariant? Fractal distribution of settlements' house prices as signature of self-organized complexity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    12. Hu, Jianqiang & Yu, Jie & Cao, Jinde & Ni, Ming & Yu, Wenjie, 2014. "Topological interactive analysis of power system and its communication module: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 99-111.
    13. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    15. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    16. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Pagani, Giuliano Andrea & Aiello, Marco, 2016. "From the grid to the smart grid, topologically," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 160-175.
    19. Rumeng Zhang & Lihong Li, 2023. "Research on Evolutionary Game and Simulation of Information Sharing in Prefabricated Building Supply Chain," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    20. Mohammad Ghaderi, 2020. "Public Health Interventions in the Face of Pandemics: Network Structure, Social Distancing, and Heterogeneity," Working Papers 1193, Barcelona School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121005057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.