IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v566y2021ics0378437120309158.html
   My bibliography  Save this article

Effect of thermal non-equilibrium and internal heat source on Brinkman–Bénard convection

Author

Listed:
  • Siddabasappa, C.
  • Sakshath, T.N.

Abstract

In the paper, we make a linear stability analysis in a Newtonian, liquid-saturated high porous medium in the presence of a heat source under the assumption of local thermal non-equilibrium(LTNE). The heat source is represented by an internal Rayleigh number RI and is considered in two ways (i) internal heat source in a liquid phase (RIl) and (ii) internal heat source in a solid phase (RIs). The internal heat generation parameter’s effect is to destabilize the onset of stationary convection due to an increase in the system’s energy. The results of local thermal equilibrium are obtained as a limiting case of the problem. The effect of various parameters on the onset of convection is analyzed and depicted graphically.

Suggested Citation

  • Siddabasappa, C. & Sakshath, T.N., 2021. "Effect of thermal non-equilibrium and internal heat source on Brinkman–Bénard convection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  • Handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309158
    DOI: 10.1016/j.physa.2020.125617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309158
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: ," Energy, Elsevier, vol. 107(C), pages 917-959.
    2. Kefayati, GH.R., 2019. "Lattice Boltzmann method for natural convection of a Bingham fluid in a porous cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 146-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (Part I: S," Energy, Elsevier, vol. 107(C), pages 889-916.
    3. Saghi, Hassan & Lakzian, Esmail, 2017. "Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization," Energy, Elsevier, vol. 128(C), pages 564-574.
    4. Fatih Selimefendigil & Hakan F. Oztop & Ali J. Chamkha, 2021. "Jet Impingement Heat Transfer of Confined Single and Double Jets with Non-Newtonian Power Law Nanofluid under the Inclined Magnetic Field Effects for a Partly Curved Heated Wall," Sustainability, MDPI, vol. 13(9), pages 1-23, May.
    5. Juan Serrano-Arellano & Juan M. Belman-Flores & Jesús Xamán & Karla M. Aguilar-Castro & Edgar V. Macías-Melo, 2020. "Numerical Study of the Double Diffusion Natural Convection inside a Closed Cavity with Heat and Pollutant Sources Placed near the Bottom Wall," Energies, MDPI, vol. 13(12), pages 1-17, June.
    6. Mohebbi, Rasul & Delouei, Amin Amiri & Jamali, Amin & Izadi, Mohsen & Mohamad, Abdulmajeed A., 2019. "Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 642-656.
    7. Lioua Kolsi & Shafqat Hussain & Kaouther Ghachem & Muhammad Jamal & Chemseddine Maatki, 2022. "Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface," Mathematics, MDPI, vol. 10(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.