IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v562y2021ics0378437120307081.html
   My bibliography  Save this article

Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view

Author

Listed:
  • Wang, Dan
  • Huang, Wei-Qiang

Abstract

This study measures systemic importance of financial institutions based on network centralities and links them to institutions’ characteristics. We focus on the lower tail dependence networks constructed by combining Clayton copula model and planar maximally filtered graph method. Considering different centrality measures’ correlations, we obtain the comprehensive centrality index about systemic importance by principal component analysis. The centrality measures can capture cross-sectional differences and time-series variations of systemic importance. The financial institutions with higher leverage, lower price earning ratio, lower total assets turnover rate and lower return on equity tend to have higher systemic importance based on tail dependence.

Suggested Citation

  • Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
  • Handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120307081
    DOI: 10.1016/j.physa.2020.125345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120307081
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nucera, Federico & Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2016. "The information in systemic risk rankings," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 461-475.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    4. Fenghua Wen & Xin Yang & Wei‐Xing Zhou, 2019. "Tail dependence networks of global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 558-567, January.
    5. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    6. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    7. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    8. Tsai, I-C., 2014. "Spillover of fear: Evidence from the stock markets of five developed countries," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 281-288.
    9. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    10. Huang, Wei-Qiang & Wang, Dan, 2018. "A return spillover network perspective analysis of Chinese financial institutions’ systemic importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 405-421.
    11. Gang-Jin Wang & Chi Xie & Peng Zhang & Feng Han & Shou Chen, 2014. "Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, May.
    12. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    13. Ke Cheng & Fengbin Lu & Xiaoguang Yang, 2012. "Copula contagion index and its efficiency," Applied Financial Economics, Taylor & Francis Journals, vol. 22(12), pages 989-1002, June.
    14. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    15. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    16. Li, Wenwei & Hommel, Ulrich & Paterlini, Sandra, 2018. "Network topology and systemic risk: Evidence from the Euro Stoxx market," Finance Research Letters, Elsevier, vol. 27(C), pages 105-112.
    17. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    18. Yue-Hua Dai & Wen-Jie Xie & Zhi-Qiang Jiang & George J. Jiang & Wei-Xing Zhou, 2016. "Correlation structure and principal components in the global crude oil market," Empirical Economics, Springer, vol. 51(4), pages 1501-1519, December.
    19. Jian Zhou & Yanmin Gao, 2012. "Tail Dependence in International Real Estate Securities Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 128-151, June.
    20. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    21. Hans Degryse & Muhammad Ather Elahi & Maria Fabiana Penas, 2010. "Cross‐Border Exposures and Financial Contagion," International Review of Finance, International Review of Finance Ltd., vol. 10(2), pages 209-240, June.
    22. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    23. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    24. Hans Degryse & Muhammad Ather Elahi & Maria Fabiana Penas, 2010. "Cross‐Border Exposures and Financial Contagion," International Review of Finance, International Review of Finance Ltd., vol. 10(2), pages 209-240, June.
    25. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    26. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    27. Chuangxia Huang & Xu Gong & Xiaohong Chen & Fenghua Wen, 2013. "Measuring and Forecasting Volatility in Chinese Stock Market Using HAR-CJ-M Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-13, March.
    28. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    29. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    30. Mezei, József & Sarlin, Peter, 2018. "RiskRank: Measuring interconnected risk," Economic Modelling, Elsevier, vol. 68(C), pages 41-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chuangxia & Deng, Yunke & Yang, Xiaoguang & Cao, Jinde & Yang, Xin, 2021. "A network perspective of comovement and structural change: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Funel, Agostino, 2022. "A method to compute the communicability of nodes through causal paths in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    3. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    4. Chen, Na & Jin, Xiu, 2020. "Industry risk transmission channels and the spillover effects of specific determinants in China’s stock market: A spatial econometrics approach," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
    7. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    8. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    10. Foglia, Matteo & Addi, Abdelhamid & Angelini, Eliana, 2022. "The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness," Global Finance Journal, Elsevier, vol. 51(C).
    11. Chen, Yan & Mo, Dongxu & Xu, Zezhou, 2022. "A study of interconnections and contagion among Chinese financial institutions using a ΔCoV aR network," Finance Research Letters, Elsevier, vol. 45(C).
    12. Xu, Qifa & Li, Mengting & Jiang, Cuixia & He, Yaoyao, 2019. "Interconnectedness and systemic risk network of Chinese financial institutions: A LASSO-CoVaR approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    13. Huang, Wei-Qiang & Wang, Dan, 2020. "Financial network linkages to predict economic output," Finance Research Letters, Elsevier, vol. 33(C).
    14. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    15. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    16. Huang, Wei-Qiang & Wang, Dan, 2018. "A return spillover network perspective analysis of Chinese financial institutions’ systemic importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 405-421.
    17. Su, Zhi & Xu, Fuwei, 2021. "Dynamic identification of systemically important financial markets in the spread of contagion: A ripple network based collective spillover effect approach," Journal of Multinational Financial Management, Elsevier, vol. 60(C).
    18. Foglia, Matteo & Addi, Abdelhamid & Wang, Gang-Jin & Angelini, Eliana, 2022. "Bearish Vs Bullish risk network: A Eurozone financial system analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    19. Baumöhl, Eduard & Bouri, Elie & Hoang, Thi-Hong-Van & Shahzad, Syed Jawad Hussain & Výrost, Tomáš, 2020. "Increasing systemic risk during the Covid-19 pandemic: A cross-quantilogram analysis of the banking sector," EconStor Preprints 222580, ZBW - Leibniz Information Centre for Economics.
    20. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120307081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.