IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v549y2020ics0378437120302181.html
   My bibliography  Save this article

Experimental study on dynamics characteristic parameter of turning behavior in self-driven mechanism

Author

Listed:
  • Cheng, Han
  • Peng, Fei
  • Huang, Danyan
  • Liu, Shaobo
  • Ni, Yong
  • Yang, Lizhong

Abstract

When changing their walking direction, pedestrians would choose different strategies for different turning angles. Step turn is for a small angle, and spin turn is for a large angle. However, previous studies on the mechanism of individual pedestrian modeling have rarely focused on this phenomenon. To clarify this point, this study performed experiments on individuals to investigate the turning process in three different physical environments—brightness, darkness with evacuation sign, and darkness without evacuation sign. Based on the self-driven mechanism, we propose a dynamical parameter to describe the features of individual turning behavior, i.e., turning scale. The experimental results indicate that when the turning radius is small, the pedestrian would apply significantly more force to increase the centripetal acceleration than the tangential acceleration to make the turn. Hereby, our work validates the existence of different turning strategies for different turning angles. Further, the difference in the choice of strategies in different physical environments is analyzed. The research achievements in this work provide a new insight to investigate pedestrian behavior, and provide data support for modeling individual pedestrian movements more accurately.

Suggested Citation

  • Cheng, Han & Peng, Fei & Huang, Danyan & Liu, Shaobo & Ni, Yong & Yang, Lizhong, 2020. "Experimental study on dynamics characteristic parameter of turning behavior in self-driven mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  • Handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120302181
    DOI: 10.1016/j.physa.2020.124497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120302181
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Chen & Martin Treiber & Venkatesan Kanagaraj & Haiying Li, 2018. "Social force models for pedestrian traffic – state of the art," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 625-653, September.
    2. Liu, Chi & Song, Weiguo & Fu, Libi & Lian, Liping & Lo, Siuming, 2017. "Experimental study on relaxation time in direction changing movement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 44-52.
    3. Parisi, Daniel R. & Gilman, Marcelo & Moldovan, Herman, 2009. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3600-3608.
    4. Ma, Peijie & Jiang, Yanqun & Zhu, Junfang & Chen, Bokui, 2019. "The effect of escape signs on the pedestrians evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Gao, Yuxing & Zhuang, Yifan & Dong, Fangshu & Peng, Fei & Zhang, Ping & Yang, Lizhong & Ni, Yong, 2020. "Experimental study on the effect of trolley case on unidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    6. Zhao, Yongxiang & Lu, Tuantuan & Su, Wenliang & Wu, Peng & Fu, Libi & Li, Meifang, 2019. "Quantitative measurement of social repulsive force in pedestrian movements based on physiological responses," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 1-20.
    7. Chen Zhou & Ming Han & Qi Liang & Yi-Fei Hu & Shu-Guang Kuai, 2019. "A social interaction field model accurately identifies static and dynamic social groupings," Nature Human Behaviour, Nature, vol. 3(8), pages 847-855, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    2. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    3. Huang, Zhongyi & Chraibi, Mohcine & Cao, Shuchao & Huang, Chuanli & Fang, Zhiming & Song, Weiguo, 2019. "A microscopic method for the evaluating of continuous pedestrian dynamic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Li, Tao & Shi, Dongdong & Chen, Juan & Li, Huiwen & Ma, Jian, 2022. "Experimental study of movement characteristics for different walking postures in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    6. Rangel-Huerta, A. & Muñoz-Meléndez, A., 2010. "Kinetic theory of situated agents applied to pedestrian flow in a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1077-1089.
    7. Fu, Libi & Zhang, Ying & Qin, Huigui & Shi, Qingxin & Chen, Qiyi & Chen, Yunqian & Shi, Yongqian, 2023. "A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    9. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    10. Yixuan Wei & Jianguo Liu & Longzhe Jin & Shu Wang & Fei Deng & Shengnan Ou & Song Pan & Jinshun Wu, 2023. "Individual Behavior and Attention Distribution during Wayfinding for Emergency Shelter: An Eye-Tracking Study," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    11. Sticco, I.M. & Frank, G.A. & Dorso, C.O., 2021. "Social Force Model parameter testing and optimization using a high stress real-life situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    12. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    14. Zhu, Yu & Chen, Tao & Ding, Ning & Chraibi, Mohcine & Fan, Wei-Cheng, 2021. "Follow people or signs? A novel way-finding method based on experiments and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    15. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    16. Rangel-Huerta, A. & Ballinas-Hernández, A.L. & Muñoz-Meléndez, A., 2017. "An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 213-224.
    17. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    18. Li, Shuying & Zhuang, Jun & Shen, Shifei & Wang, Jia, 2017. "Driving-forces model on individual behavior in scenarios considering moving threat agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 127-140.
    19. Shi, Zhigang & Zhang, Jun & Song, Weiguo, 2021. "Where luggage-related facilities should be placed along passageways in traffic hubs: Right, left, or in the middle?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120302181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.