IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp873-880.html
   My bibliography  Save this article

An optimization model for wireless power transfer system based on circuit simulation

Author

Listed:
  • Yan, Xiao-Yu
  • Yang, Shi-Chun
  • He, Hong
  • Tang, Tie-Qiao

Abstract

Recently, the market promotion of wireless power transfer (WPT) products has generated great expectations for systematic design and optimization of practical WPT system (especially the coupler). The existing optimization methods usually employ the Finite Element Analysis (FEA) to simulate the magnetic field, where the effects and requirements of overall circuit are neglected. To address this issue, an optimization approach for the coupler based on circuit simulation is proposed in this paper, and the secondary compensation capacitor is further optimized to improve the system performance. The simulation model is embedded into Simulink and the calculation part is embedded into MATLAB, where the objective is to achieve the maximum efficiency by searching three variables under adequate constraints. The numerical results imply that the proposed method is more effective and accurate than the traditional trial-and-error way, and that it suits the practical WPT system design excellently.

Suggested Citation

  • Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:873-880
    DOI: 10.1016/j.physa.2018.06.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307829
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    2. Liu, Yi & Cheng, Rong-jun & Lei, Li & Ge, Hong-xia, 2016. "The influence of the non-motor vehicles for the car-following model considering traffic jerk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 376-382.
    3. Young Jae Jang & Seungmin Jeong & Min Seok Lee, 2016. "Initial Energy Logistics Cost Analysis for Stationary, Quasi-Dynamic, and Dynamic Wireless Charging Public Transportation Systems," Energies, MDPI, vol. 9(7), pages 1-23, June.
    4. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    5. Zhu, Wen-Xing & Zhang, Li-Dong, 2014. "A speed feedback control strategy for car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 343-351.
    6. Chen, Zhibin & He, Fang & Yin, Yafeng, 2016. "Optimal deployment of charging lanes for electric vehicles in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 344-365.
    7. Ge, Hong-Xia & Zheng, Peng-jun & Wang, Wei & Cheng, Rong-Jun, 2015. "The car following model considering traffic jerk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 274-278.
    8. Ou, Hui & Tang, Tie-Qiao, 2018. "An extended two-lane car-following model accounting for inter-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 260-268.
    9. Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
    10. Cheng, Rongjun & Ge, Hongxia & Wang, Jufeng, 2017. "KdV–Burgers equation in a new continuum model based on full velocity difference model considering anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 52-59.
    11. Wang, Yunong & Cheng, Rongjun & Ge, Hongxia, 2017. "A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 478-484.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    2. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of carpooling on trip costs under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 136-143.
    3. Zhang, Zhao-Ze & Huang, Hai-Jun & Tang, Tie-Qiao, 2018. "Impacts of preceding information on travelers’ departure time behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 523-529.
    4. Jin, Zhizhan & Li, Zhipeng & Cheng, Rongjun & Ge, Hongxia, 2018. "Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 278-288.
    5. Ou, Hui & Tang, Tie-Qiao & Zhang, Jian & Zhou, Jie-Ming, 2018. "A car-following model accounting for probability distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 105-113.
    6. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.
    7. He, Jia & Huang, Hai-Jun & Yang, Hai & Tang, Tie-Qiao, 2017. "An electric vehicle driving behavior model in the traffic system with a wireless charging lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 119-126.
    8. Schwerdfeger, Stefan & Bock, Stefan & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing the electrification of roads with charge-while-drive technology," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1111-1127.
    9. He, Jia & Yang, Hai & Huang, Hai-Jun & Tang, Tie-Qiao, 2018. "Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 1-10.
    10. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    11. Wang, Jing-Peng & Huang, Hai-Jun & (Jeff) Ban, Xuegang, 2019. "Optimal capacity allocation for high occupancy vehicle (HOV) lane in morning commute," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 354-361.
    12. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    13. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    14. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    15. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    16. Shaohua Cui & Hui Zhao & Cuiping Zhang, 2018. "Locating Charging Stations of Various Sizes with Different Numbers of Chargers for Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-22, November.
    17. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 8-18.
    19. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    20. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:873-880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.