IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp273-282.html
   My bibliography  Save this article

Spectral analysis of time-dependent market-adjusted return correlation matrix

Author

Listed:
  • Bommarito, Michael J.
  • Duran, Ahmet

Abstract

We present an adjusted method for calculating the eigenvalues of a time-dependent return correlation matrix in a moving window. First, we compare the normalized maximum eigenvalue time series of the market-adjusted return correlation matrix to that of the logarithmic return correlation matrix on an 18-year dataset of 310 S&P 500-listed stocks for small and large window or memory sizes. We observe that the resulting new eigenvalue time series is more stationary than the time series obtained without the adjustment. Second, we perform this analysis while sweeping the window size τ∈{5,…,100}∪{500} in order to examine the dependence on the choice of window size. This approach demonstrates the multi-modality of the eigenvalue distributions. We find that the three dimensional distribution of the eigenvalue time series for our market-adjusted return is significantly more stationary than that produced by classic method. Finally, our model offers an approximate polarization domain characterized by a smooth L-shaped strip. The polarization with large amplitude is revealed, while there is persistence in agreement of individual stock returns’ movement with market with small amplitude most of the time.

Suggested Citation

  • Bommarito, Michael J. & Duran, Ahmet, 2018. "Spectral analysis of time-dependent market-adjusted return correlation matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 273-282.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:273-282
    DOI: 10.1016/j.physa.2018.02.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301778
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. T. Conlon & H. J. Ruskin & M. Crane, 2009. "Multiscaled Cross-Correlation Dynamics In Financial Time-Series," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 12(04n05), pages 439-454.
    4. Kwapień, J. & Drożdż, S. & Oświe¸cimka, P., 2006. "The bulk of the stock market correlation matrix is not pure noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 589-606.
    5. Heimo, Tapio & Saramäki, Jari & Onnela, Jukka-Pekka & Kaski, Kimmo, 2007. "Spectral and network methods in the analysis of correlation matrices of stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 147-151.
    6. Simone Bianco & Roberto Reno, 2009. "Unexpected volatility and intraday serial correlation," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 465-475.
    7. Malevergne, Y. & Sornette, D., 2004. "Collective origin of the coexistence of apparent random matrix theory noise and of factors in large sample correlation matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 660-668.
    8. Eom, Cheoljun & Jung, Woo-Sung & Kaizoji, Taisei & Kim, Seunghwan, 2009. "Effect of changing data size on eigenvalues in the Korean and Japanese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4780-4786.
    9. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.
    10. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    11. Drożdż, S & Grümmer, F & Ruf, F & Speth, J, 2001. "Towards identifying the world stock market cross-correlations: DAX versus Dow Jones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 226-234.
    12. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    13. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    14. Lewellen, Jonathan & Nagel, Stefan, 2006. "The conditional CAPM does not explain asset-pricing anomalies," Journal of Financial Economics, Elsevier, vol. 82(2), pages 289-314, November.
    15. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    16. Ahmet Duran & Burhaneddin Izgi, 2014. "Comovement and Polarization of Interest Rate and Stock Market in Turkey," BIFEC Book of Abstracts & Proceedings, Research and Business Development Department, Borsa Istanbul, vol. 1(2), pages 130-141, March.
    17. Drożdż, S & Grümmer, F & Górski, A.Z & Ruf, F & Speth, J, 2000. "Dynamics of competition between collectivity and noise in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 440-449.
    18. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    19. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    20. Ahmet Duran & Gunduz Caginalp, 2007. "Overreaction diamonds: precursors and aftershocks for significant price changes," Quantitative Finance, Taylor & Francis Journals, vol. 7(3), pages 321-342.
    21. Sergio Arianos & Anna Carbone, 2008. "Cross-correlation of long-range correlated series," Papers 0804.2064, arXiv.org, revised Mar 2009.
    22. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    23. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    24. Ahmet Duran & Michael Bommarito, 2011. "A profitable trading and risk management strategy despite transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 829-848.
    25. L. Kullmann & J. Kertesz & K. Kaski, 2002. "Time dependent cross correlations between different stock returns: A directed network of influence," Papers cond-mat/0203256, arXiv.org, revised May 2002.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    2. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    3. Siqueira, Erinaldo Leite & Stošić, Tatijana & Bejan, Lucian & Stošić, Borko, 2010. "Correlations and cross-correlations in the Brazilian agrarian commodities and stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2739-2743.
    4. Kim, Min Jae & Kim, Sehyun & Jo, Yong Hwan & Kim, Soo Yong, 2011. "Dependence structure of the commodity and stock markets, and relevant multi-spread strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3842-3854.
    5. Yin, Yi & Shang, Pengjian, 2013. "Modified DFA and DCCA approach for quantifying the multiscale correlation structure of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6442-6457.
    6. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    7. Liu, Li-Zhi & Qian, Xi-Yuan & Lu, Heng-Yao, 2010. "Cross-sample entropy of foreign exchange time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4785-4792.
    8. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    9. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    10. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.
    11. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    12. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    13. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    14. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    15. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    16. Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
    17. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    18. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    19. Eom, Cheoljun, 2017. "Two-faced property of a market factor in asset pricing and diversification effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 190-199.
    20. Christoly Biely & Stefan Thurner, 2008. "Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 705-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:273-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.