IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v457y2016icp117-128.html
   My bibliography  Save this article

Multilayer network of language: A unified framework for structural analysis of linguistic subsystems

Author

Listed:
  • Martinčić-Ipšić, Sanda
  • Margan, Domagoj
  • Meštrović, Ana

Abstract

Recently, the focus of complex networks’ research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena — multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks’ structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.

Suggested Citation

  • Martinčić-Ipšić, Sanda & Margan, Domagoj & Meštrović, Ana, 2016. "Multilayer network of language: A unified framework for structural analysis of linguistic subsystems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 117-128.
  • Handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:117-128
    DOI: 10.1016/j.physa.2016.03.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300802
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Barigozzi & Giorgio Fagiolo & Diego Garlaschelli, 2009. "Multinetwork of international trade: A commodity-specific analysis," Papers 0908.1879, arXiv.org, revised Jun 2010.
    2. Amancio, Diego R. & Nunes, Maria G.V. & Oliveira, Osvaldo N. & Costa, Luciano da F., 2012. "Extractive summarization using complex networks and syntactic dependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1855-1864.
    3. Medeiros Soares, M. & Corso, G. & Lucena, L.S., 2005. "The network of syllables in Portuguese," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 678-684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunhye Kim & Inchae Park & Byungun Yoon, 2020. "SAO2Vec: Development of an algorithm for embedding the subject–action–object (SAO) structure using Doc2Vec," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-26, February.
    2. Criado-Alonso, Ángeles & Aleja, David & Romance, Miguel & Criado, Regino, 2022. "Derivative of a hypergraph as a tool for linguistic pattern analysis," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Solomija Buk & Yuri Krynytskyi & Andrij Rovenchak, 2019. "Properties Of Autosemantic Word Networks In Ukrainian Texts," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-22, December.
    4. Pérez, Sergio Iglesias & Moral-Rubio, Santiago & Criado, Regino, 2023. "Combining multiplex networks and time series: A new way to optimize real estate forecasting in New York using cab rides," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Sanda Martinčić-Ipšić & Edvin Močibob & Matjaž Perc, 2017. "Link prediction on Twitter," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    6. Iglesias Pérez, Sergio & Moral-Rubio, Santiago & Criado, Regino, 2021. "A new approach to combine multiplex networks and time series attributes: Building intrusion detection systems (IDS) in cybersecurity," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Criado-Alonso, Ángeles & Battaner-Moro, Elena & Aleja, David & Romance, Miguel & Criado, Regino, 2021. "Enriched line graph: A new structure for searching language collocations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Woon Peng Goh & Kang-Kwong Luke & Siew Ann Cheong, 2018. "Functional shortcuts in language co-occurrence networks," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    2. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    3. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
    4. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna & Luu, Duc Thi, 2022. "The multilayer architecture of the global input-output network and its properties," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 304-341.
    5. A. Baronchelli & T.E. Uberti, 2018. "Exports and FDI: comparing networks in the new millennium," Working Paper CRENoS 201813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    6. Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.
    7. Shi, Qing & Sun, Xiaoqi & Xu, Man & Wang, Mengjiao, 2022. "The multiplex network structure of global cobalt industry chain," Resources Policy, Elsevier, vol. 76(C).
    8. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    9. Aldasoro, Iñaki & Alves, Iván, 2018. "Multiplex interbank networks and systemic importance: An application to European data," Journal of Financial Stability, Elsevier, vol. 35(C), pages 17-37.
    10. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    11. Arvis, Jean-Francois, 2013. "How many dimensions do we trade in ? product space geometry and latent comparative advantage," Policy Research Working Paper Series 6478, The World Bank.
    12. Ma, Yu & Wang, Minxi & Li, Xin, 2022. "Analysis of the characteristics and stability of the global complex nickel ore trade network," Resources Policy, Elsevier, vol. 79(C).
    13. Michael Lebacher & Paul W. Thurner & Göran Kauermann, 2021. "Censored regression for modelling small arms trade volumes and its ‘Forensic’ use for exploring unreported trades," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 909-933, August.
    14. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "Hybrid self-optimized clustering model based on citation links and textual features to detect research topics," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    15. Pietro Vozzella & Franco Ruzzenenti & Giampaolo Gabbi, 2019. "Energy and Environmental Flows: Do Most Financialised Countries within the Mediterranean Area Export Unsustainability?," Sustainability, MDPI, vol. 11(13), pages 1-15, July.
    16. C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2023. "Prospects of BRICS currency dominance in international trade," Papers 2305.00585, arXiv.org.
    17. Franco Ruzzenenti & Andreas Joseph & Elisa Ticci & Pietro Vozzella & Giampaolo Gabbi, 2015. "Interactions between Financial and Environmental Networks in OECD Countries," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-12, September.
    18. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    19. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    20. Gianfranco Giulioni & Edmondo Di Giuseppe & Piero Toscano & Francesco Miglietta & Massimiliano Pasqui, 2019. "A Novel Computational Model of the Wheat Global Market with an Application to the 2010 Russian Federation Case," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(3), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:117-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.