IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v442y2016icp436-457.html
   My bibliography  Save this article

Residence time estimates for asymmetric simple exclusion dynamics on strips

Author

Listed:
  • Cirillo, Emilio N.M.
  • Krehel, Oleh
  • Muntean, Adrian
  • van Santen, Rutger
  • Sengar, Aditya

Abstract

The target of our study is to approximate numerically and, in some particular physically relevant cases, also analytically, the residence time of particles undergoing an asymmetric simple exclusion dynamics on a two-dimensional vertical strip. The sources of asymmetry are twofold: (i) the choice of boundary conditions (different reservoir levels) and (ii) the strong anisotropy from a drift nonlinear in density with prescribed directionality. We focus on the effect of the choice of anisotropy on residence time. We analyze our results by means of two theoretical models, a Mean Field and a one-dimensional Birth and Death one. For positive drift we find a striking agreement between Monte Carlo and theoretical results. In the zero drift case we still find agreement as long as particles can freely escape the strip through the bottom boundary. Otherwise, the two models give different predictions and their ability to reproduce numerical results depends on the horizontal displacement probability. The topic is relevant for situations occurring in pedestrian flows or biological transport in crowded environments, where lateral displacements of the particles occur predominantly affecting therefore in an essentially way the efficiency of the overall transport mechanism.

Suggested Citation

  • Cirillo, Emilio N.M. & Krehel, Oleh & Muntean, Adrian & van Santen, Rutger & Sengar, Aditya, 2016. "Residence time estimates for asymmetric simple exclusion dynamics on strips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 436-457.
  • Handle: RePEc:eee:phsmap:v:442:y:2016:i:c:p:436-457
    DOI: 10.1016/j.physa.2015.09.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007736
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cirillo, Emilio N.M. & Muntean, Adrian, 2013. "Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3578-3588.
    2. Simpson, Matthew J. & Landman, Kerry A. & Hughes, Barry D., 2009. "Multi-species simple exclusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 399-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Cirillo, E.N.M. & Colangeli, M. & Muntean, A., 2017. "Trapping in bottlenecks: Interplay between microscopic dynamics and large scale effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 30-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    2. Baker, Ruth E. & Simpson, Matthew J., 2012. "Models of collective cell motion for cell populations with different aspect ratio: Diffusion, proliferation and travelling waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3729-3750.
    3. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    4. Irons, Carolyn & Plank, Michael J. & Simpson, Matthew J., 2016. "Lattice-free models of directed cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 110-121.
    5. Tu, Lihua & Zhou, Jie, 2019. "Memory’s effect on bidirectional pedestrian flow based on lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    7. Matthew J Simpson & Parvathi Haridas & D L Sean McElwain, 2014. "Do Pioneer Cells Exist?," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    8. Clements, Alastair J. & Fadai, Nabil T., 2022. "Agent-based modelling of sports riots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
    10. Li, Na & Guo, Ren-Yong, 2020. "Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:442:y:2016:i:c:p:436-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.