IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v413y2014icp438-458.html
   My bibliography  Save this article

Multifractal diffusion entropy analysis: Optimal bin width of probability histograms

Author

Listed:
  • Jizba, Petr
  • Korbel, Jan

Abstract

In the framework of Multifractal Diffusion Entropy Analysis we propose a method for choosing an optimal bin-width in histograms generated from underlying probability distributions of interest. The method presented uses techniques of Rényi’s entropy and the mean squared error analysis to discuss the conditions under which the error in the multifractal spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as sampled at a daily rate in the time period 1950–2013. In order to demonstrate a strength of the method proposed we compare the multifractal δ-spectrum for various bin-widths and show the robustness of the method, especially for large values of q. For such values, other methods in use, e.g., those based on moment estimation, tend to fail for heavy-tailed data or data with long correlations. Connection between the δ-spectrum and Rényi’s q parameter is also discussed and elucidated on a simple example of multiscale time series.

Suggested Citation

  • Jizba, Petr & Korbel, Jan, 2014. "Multifractal diffusion entropy analysis: Optimal bin width of probability histograms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 438-458.
  • Handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:438-458
    DOI: 10.1016/j.physa.2014.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114005755
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter & Wand, Matthew P., 1988. "Minimizing L1 distance in nonparametric density estimation," Journal of Multivariate Analysis, Elsevier, vol. 26(1), pages 59-88, July.
    2. Kim, Kyungsik & Yoon, Seong-Min, 2004. "Multifractal features of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 272-278.
    3. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    4. Jizba, Petr & Kleinert, Hagen & Shefaat, Mohammad, 2012. "Rényi’s information transfer between financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(10), pages 2971-2989.
    5. Huang, Jingjing & Shang, Pengjian & Zhao, Xiaojun, 2012. "Multifractal diffusion entropy analysis on stock volatility in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5739-5745.
    6. Park, Joongwoo Brian & Won Lee, Jeong & Yang, Jae-Suk & Jo, Hang-Hyun & Moon, Hie-Tae, 2007. "Complexity analysis of the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 179-187.
    7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Będowska-Sójka, Barbara & Kliber, Agata, 2021. "Information content of liquidity and volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Mahmoodi, Korosh & West, Bruce J. & Grigolini, Paolo, 2020. "On the dynamical foundation of multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Petr Jizba & Jan Korbel, 2016. "Techniques for multifractal spectrum estimation in financial time series," Papers 1610.07028, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petr Jizba & Jan Korbel, 2014. "Multifractal Diffusion Entropy Analysis: Optimal Bin Width of Probability Histograms," Papers 1401.3316, arXiv.org, revised Mar 2014.
    2. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    3. Huang, Jingjing & Shang, Pengjian, 2015. "Multiscale multifractal diffusion entropy analysis of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 221-228.
    4. Petr Jizba & Jan Korbel, 2016. "Techniques for multifractal spectrum estimation in financial time series," Papers 1610.07028, arXiv.org.
    5. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    6. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    7. Goddard, John & Onali, Enrico, 2016. "Long memory and multifractality: A joint test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 288-294.
    8. Jinkyu Kim & Gunn Kim & Sungbae An & Young-Kyun Kwon & Sungroh Yoon, 2013. "Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    9. Lin, Aijing & Ma, Hui & Shang, Pengjian, 2015. "The scaling properties of stock markets based on modified multiscale multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 525-537.
    10. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    11. Fernandes, Leonardo H.S. & Araújo, Fernando H.A. & Silva, Igor E.M. & Leite, Urbanno P.S. & de Lima, Neílson F. & Stosic, Tatijana & Ferreira, Tiago A.E., 2020. "Multifractal behavior in the dynamics of Brazilian inflation indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    13. Yan, Ruzhen & Yue, Ding & Chen, Xudong & Wu, Xu, 2020. "Non-linear characterization and trend identification of liquidity in China's new OTC stock market based on multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    15. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    16. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    17. Rodriguez-Romo, Suemi & Sosa-Herrera, Antonio, 2013. "Lacunarity and multifractal analysis of the large DLA mass distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3316-3328.
    18. Li, Tingyi & Xue, Leyang & Chen, Yu & Chen, Feier & Miao, Yuqi & Shao, Xinzeng & Zhang, Chenyi, 2018. "Insights from multifractality analysis of tanker freight market volatility with common external factor of crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 374-384.
    19. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    20. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:438-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.