IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5739-5745.html
   My bibliography  Save this article

Multifractal diffusion entropy analysis on stock volatility in financial markets

Author

Listed:
  • Huang, Jingjing
  • Shang, Pengjian
  • Zhao, Xiaojun

Abstract

This paper introduces a generalized diffusion entropy analysis method to analyze long-range correlation then applies this method to stock volatility series. The method uses the techniques of the diffusion process and Rényi entropy to focus on the scaling behaviors of regular volatility and extreme volatility respectively in developed and emerging markets. It successfully distinguishes their differences where regular volatility exhibits long-range persistence while extreme volatility reveals anti-persistence.

Suggested Citation

  • Huang, Jingjing & Shang, Pengjian & Zhao, Xiaojun, 2012. "Multifractal diffusion entropy analysis on stock volatility in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5739-5745.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5739-5745
    DOI: 10.1016/j.physa.2012.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112005432
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    2. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, H.Eugene, 2003. "Understanding the cubic and half-cubic laws of financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 1-5.
    3. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    4. Cai, Shi-Min & Zhou, Pei-Ling & Yang, Hui-Jie & Yang, Chun-Xia & Wang, Bing-Hong & Zhou, Tao, 2006. "Diffusion entropy analysis on the scaling behavior of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 337-344.
    5. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    6. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    7. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    8. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2006. "Correlation networks among currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 336-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batra, Luckshay & Taneja, H.C., 2020. "Evaluating volatile stock markets using information theoretic measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Maria C. Mariani & Peter K. Asante & Md Al Masum Bhuiyan & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Osei K. Tweneboah, 2020. "Long-Range Correlations and Characterization of Financial and Volcanic Time Series," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    3. Liu, Zhengli & Shang, Pengjian & Wang, Yuanyuan, 2019. "Multifractal weighted permutation analysis based on Rényi entropy for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. He, Qian & Huang, Jingjing, 2020. "A method for analyzing correlation between multiscale and multivariate systems—Multiscale multidimensional cross recurrence quantification (MMDCRQA)," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    6. Daniel Chiew & Judy Qiu & Sirimon Treepongkaruna & Jiping Yang & Chenxiao Shi, 2019. "The predictive ability of the expected utility-entropy based fund rating approach: A comparison investigation with Morningstar ratings in US," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    7. Dai, Meifeng & Hou, Jie & Gao, Jianyu & Su, Weiyi & Xi, Lifeng & Ye, Dandan, 2016. "Mixed multifractal analysis of China and US stock index series," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 268-275.
    8. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    9. Rodriguez-Romo, Suemi & Sosa-Herrera, Antonio, 2013. "Lacunarity and multifractal analysis of the large DLA mass distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3316-3328.
    10. Petr Jizba & Jan Korbel, 2016. "Techniques for multifractal spectrum estimation in financial time series," Papers 1610.07028, arXiv.org.
    11. Yan, Ruzhen & Yue, Ding & Chen, Xudong & Wu, Xu, 2020. "Non-linear characterization and trend identification of liquidity in China's new OTC stock market based on multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Gu, Danlei & Huang, Jingjing, 2019. "Multifractal detrended fluctuation analysis on high-frequency SZSE in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 225-235.
    13. Jizba, Petr & Korbel, Jan, 2014. "Multifractal diffusion entropy analysis: Optimal bin width of probability histograms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 438-458.
    14. He, Jiayi & Shang, Pengjian, 2017. "Comparison of transfer entropy methods for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 772-785.
    15. Huang, Jingjing & Shang, Pengjian, 2015. "Multiscale multifractal diffusion entropy analysis of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 221-228.
    16. Raymond Ka-Kay Pang & Oscar Granados & Harsh Chhajer & Erika Fille Legara, 2020. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Papers 2009.13390, arXiv.org, revised Feb 2021.
    17. Zhang, Yali & Shang, Pengjian & He, Jiayi & Xiong, Hui, 2020. "Cumulative Tsallis entropy based on multi-scale permuted distribution of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    2. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    3. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    4. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    5. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying, 2012. "Price–volume multifractal analysis and its application in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3484-3495.
    6. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    8. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.
    9. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    10. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    11. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    13. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    14. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    15. Wu, Yue & Shang, Pengjian & Chen, Shijian, 2019. "Modified multifractal large deviation spectrum based on CID for financial market system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1331-1342.
    16. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    17. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    18. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    19. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    20. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5739-5745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.