IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i23p6165-6173.html
   My bibliography  Save this article

Scaling of average receiving time and average weighted shortest path on weighted Koch networks

Author

Listed:
  • Dai, Meifeng
  • Chen, Dandan
  • Dong, Yujuan
  • Liu, Jie

Abstract

In this paper we present weighted Koch networks based on classic Koch networks. A new method is used to determine the average receiving time (ART), whose key step is to write the sum of mean first-passage times (MFPTs) for all nodes to absorption at the trap located at a hub node as a recursive relation. We show that the ART exhibits a sublinear or linear dependence on network order. Thus, the weighted Koch networks are more efficient than classic Koch networks in receiving information. Moreover, average weighted shortest path (AWSP) is calculated. In the infinite network order limit, the AWSP depends on the scaling factor. The weighted Koch network grows unbounded but with the logarithm of the network size, while the weighted shortest paths stay bounded.

Suggested Citation

  • Dai, Meifeng & Chen, Dandan & Dong, Yujuan & Liu, Jie, 2012. "Scaling of average receiving time and average weighted shortest path on weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6165-6173.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6165-6173
    DOI: 10.1016/j.physa.2012.06.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112006267
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.06.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Meifeng & Dai, Changxi & Ju, Tingting & Shen, Junjie & Sun, Yu & Su, Weiyi, 2019. "Mean first-passage times for two biased walks on the weighted rose networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 268-278.
    2. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.
    3. Ye, Dandan & Dai, Meifeng & Sun, Yu & Su, Weiyi, 2017. "Average weighted receiving time on the non-homogeneous double-weighted fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 390-402.
    4. Zong, Yue & Dai, Meifeng & Wang, Xiaoqian & He, Jiaojiao & Zou, Jiahui & Su, Weiyi, 2018. "Network coherence and eigentime identity on a family of weighted fractal networks," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 184-194.
    5. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    6. Sun, Yu & Dai, Meifeng & Xi, Lifeng, 2014. "Scaling of average weighted shortest path and average receiving time on weighted hierarchical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 110-118.
    7. Niu, Min & Song, Shuaishuai, 2018. "Scaling of average weighted shortest path and average receiving time on the weighted Cayley networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 707-717.
    8. Hu, Zhongren & Wu, Bo, 2023. "The average shortest distance of three colored substitution networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Jiao, Bo & Nie, Yuan-ping & Shi, Jian-mai & Huang, Cheng-dong & Zhou, Ying & Du, Jing & Guo, Rong-hua & Tao, Ye-rong, 2016. "Scaling of weighted spectral distribution in deterministic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 632-645.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    2. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    3. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    4. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    5. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    6. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    7. M. C. González & A. O. Sousa & H. J. Herrmann, 2004. "Opinion Formation On A Deterministic Pseudo-Fractal Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 45-57.
    8. A. Chatterjee, 2009. "Kinetic models for wealth exchange on directed networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(4), pages 593-598, February.
    9. D Dylan Johnson Restrepo & Neil F Johnson, 2017. "Unraveling the Collective Dynamics of Complex Adaptive Biomedical Systems," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 8(5), pages 118-132, September.
    10. A. Santiago & J. P. Cárdenas & M. L. Mouronte & V. Feliu & R. M. Benito, 2008. "Modeling The Topology Of Sdh Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(12), pages 1809-1820.
    11. Slobodan Maletić & Danijela Horak & Milan Rajković, 2012. "Cooperation, Conflict And Higher-Order Structures Of Social Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-29.
    12. Giorgio Fagiolo & Marco Valente & Nicolaas J. Vriend, 2009. "A Dynamic Model of Segregation in Small-World Networks," Lecture Notes in Economics and Mathematical Systems, in: Ahmad K. Naimzada & Silvana Stefani & Anna Torriero (ed.), Networks, Topology and Dynamics, pages 111-126, Springer.
    13. H. Lin & C.-X. Wu, 2006. "Dynamics of congestion transition triggered by multiple walkers on complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(4), pages 543-547, June.
    14. Derzsi, A. & Derzsy, N. & Káptalan, E. & Néda, Z., 2011. "Topology of the Erasmus student mobility network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2601-2610.
    15. Gómez-Gardeñes, J. & Moreno, Y. & Floría, L.M., 2005. "Michaelis–Menten dynamics in complex heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 265-281.
    16. G. De Masi & Y. Fujiwara & M. Gallegati & B. Greenwald & J. E. Stiglitz, 2009. "An Analysis of the Japanese Credit Network," Papers 0901.2384, arXiv.org, revised Nov 2010.
    17. P. Toranj Simin & Gholam Reza Jafari & Marcel Ausloos & Cesar Federico Caiafa & Facundo Caram & Adeyemi Sonubi & Alberto Arcagni & Silvana Stefani, 2018. "Dynamical phase diagrams of a love capacity constrained prey–predator model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(2), pages 1-18, February.
    18. Tibély, Gergely, 2012. "Criterions for locally dense subgraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1831-1847.
    19. A. O. Sousa & T. Yu-Song & M. Ausloos, 2008. "Effects of agents' mobility on opinion spreading in Sznajd model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(1), pages 115-124, November.
    20. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6165-6173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.