IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i4p318-324.html
   My bibliography  Save this article

Performance characteristic of a Stirling refrigeration cycle in micro/nano scale

Author

Listed:
  • Nie, Wenjie
  • He, Jizhou
  • Du, Jianqiang

Abstract

The aim of the paper is to present the performance characteristics of a Stirling refrigeration cycle in micro/nano scale, in which the working substance of cycle is an ideal Maxwellian gas. Due to the quantum boundary effect on the gas particles confined in the finite domain, the cycle no longer possesses the condition of perfect regeneration. The inherent regenerative losses, the refrigeration heat and coefficient of performance (COP) of the cycle are derived. It is found that, for the micro/nano scaled Stirling refrigeration cycle devices, the refrigeration heat and COP of cycle all depend on the surface area of the system (boundary of cycle) besides the temperature of the heat reservoirs, the volume of system and other parameters, while for the macro scaled refrigeration cycle devices, the refrigeration heat and COP of cycle are independent of the surface area of the system. Variations of the refrigeration heat ratio rR and the COP ratio rε with the temperature ratio τ and volume ratio rV for the different surface area ratio rA are examined, which reveals the influence of the boundary of cycle on the performance of a micro/nano scaled Stirling refrigeration cycle. The results are useful for designing of a micro/nano scaled Stirling cycle device and may conduce to confirming experimentally the quantum boundary effect in the micro/nano scaled devices.

Suggested Citation

  • Nie, Wenjie & He, Jizhou & Du, Jianqiang, 2009. "Performance characteristic of a Stirling refrigeration cycle in micro/nano scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 318-324.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:4:p:318-324
    DOI: 10.1016/j.physa.2008.10.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108008728
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.10.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    2. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    3. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    4. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Nie, Wenjie & Liao, Qinghong & Zhang, ChunQiang & He, Jizhou, 2010. "Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics," Energy, Elsevier, vol. 35(12), pages 4658-4662.
    6. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    7. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:4:p:318-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.