Advanced Search
MyIDEAS: Login to save this article or follow this journal

Catastrophes minimization on the equilibrium manifold

Contents:

Author Info

  • Loi, Andrea
  • Matta, Stefano

Abstract

In a fixed total resources setting, we show that there exists a Riemannian metric g on the equilibrium manifold, which coincides with any (fixed) Riemannian metric with an economic meaning outside an arbitrarily small neighborhood of the set of critical equilibria, such that a minimal geodesic connecting two regular equilibria is arbitrarily close to a smooth path which minimizes catastrophes.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0304406811000759
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 47 (2011)
Issue (Month): 4 ()
Pages: 617-620

as in new window
Handle: RePEc:eee:mateco:v:47:y:2011:i:4:p:617-620

Contact details of provider:
Web page: http://www.elsevier.com/locate/jmateco

Related research

Keywords: Equilibrium manifold; Regular economies; Catastrophes; Riemannian metric;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Loi, Andrea & Matta, Stefano, 2009. "Evolution paths on the equilibrium manifold," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 854-859, December.
  2. Balasko, Yves, 1979. "A geometric approach to equilibrium analysis," Journal of Mathematical Economics, Elsevier, vol. 6(3), pages 217-228, December.
  3. Loi, Andrea & Matta, Stefano, 2008. "Geodesics on the equilibrium manifold," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1379-1384, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Andrea Loi & Stefano Matta, 2012. "Structural stability and catastrophes," Economics Bulletin, AccessEcon, vol. 32(4), pages 3378-3385.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:47:y:2011:i:4:p:617-620. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.