IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v193y2022icp713-724.html
   My bibliography  Save this article

Research and realization of parallel algorithms for large scale crowd evacuation in emergency

Author

Listed:
  • Cui, Xiaoting
  • Ji, Jingwei
  • Bai, Xuehe
  • Cao, Yin
  • Wu, Tong

Abstract

Based on the cellular automata evacuation model which is on the basis of triangular meshing, the CPU-based parallel algorithm is applied to enhance the efficiency of the evacuation simulation algorithm which analyzes the model from the aspects of correctness, speedup, and scalability. Compared its operation results with those of the existing software pathfinder based on Agent algorithm, the results show that the cellular automata model is more efficient in evacuation of high-density and high-traffic scenes with an acceleration ratio of 300% without congestion. The scalability of the parallel algorithm makes large-scale scenarios more confronted with actual status, real-time monitoring, and a simulation plan for evacuation providing in time.

Suggested Citation

  • Cui, Xiaoting & Ji, Jingwei & Bai, Xuehe & Cao, Yin & Wu, Tong, 2022. "Research and realization of parallel algorithms for large scale crowd evacuation in emergency," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 713-724.
  • Handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:713-724
    DOI: 10.1016/j.matcom.2021.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    2. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    3. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    4. Ji, Jingwei & Lu, Ligang & Jin, Zihao & Wei, Shoupeng & Ni, Lu, 2018. "A cellular automata model for high-density crowd evacuation using triangle grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1034-1045.
    5. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
    6. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    2. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    3. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    4. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    5. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    6. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    8. Elisabetta Carlini & Adriano Festa & Francisco J. Silva & Marie-Therese Wolfram, 2017. "A Semi-Lagrangian Scheme for a Modified Version of the Hughes’ Model for Pedestrian Flow," Dynamic Games and Applications, Springer, vol. 7(4), pages 683-705, December.
    9. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
    10. von Sivers, Isabella & Köster, Gerta, 2015. "Dynamic stride length adaptation according to utility and personal space," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 104-117.
    11. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    15. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    16. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    18. Ji, Xiangfeng & Zhang, Jian & Ran, Bin, 2013. "A study on pedestrian choice between stairway and escalator in the transfer station based on floor field cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5089-5100.
    19. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    20. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:713-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.