IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v174y2020icp233-243.html
   My bibliography  Save this article

Increasing synchronizability in a scale-free network via edge elimination

Author

Listed:
  • Garza-González, E.
  • Posadas-Castillo, C.
  • López-Mancilla, D.
  • Soriano-Sánchez, A.G.

Abstract

In this paper, synchronization of a Scale-Free (SF) network of chaotic oscillators is addressed. Synchronizability is increased, while eliminating edges in a SF network. We propose two novel methods using perturbation theory as an edge selection criteria, to eliminate the least amount of edges. Also we modified one existing method from the literature. These methods yielded the best results at increasing synchronizability the most per edge eliminated, while avoiding node isolation. These three strategies were tested in SF networks with different average degrees, and compared with other five strategies found in literature. Some five criterions on the selection of the method are given. This paper is especially interested in Case 3 of the Master Stability Function, which allows synchronizability to be defined. Therefore we use chaotic Rössler oscillators as nodes in the SF networks.

Suggested Citation

  • Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
  • Handle: RePEc:eee:matcom:v:174:y:2020:i:c:p:233-243
    DOI: 10.1016/j.matcom.2020.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420300781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 2000. "Scale-free characteristics of random networks: the topology of the world-wide web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 69-77.
    2. Soriano-Sánchez, A.G. & Posadas-Castillo, C., 2018. "Smart pattern to generate small–world networks," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 415-422.
    3. Boukabou, Abdelkrim & Mekircha, Naim, 2012. "Generalized chaos control and synchronization by nonlinear high-order approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2268-2281.
    4. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2016. "Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 305-316.
    5. Song, Qiang & Cao, Jinde & Liu, Fang, 2012. "Pinning synchronization of linearly coupled delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 86(C), pages 39-51.
    6. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    7. Castañeda, Carlos E. & López-Mancilla, D. & Chiu, R. & Villafaña-Rauda, E. & Orozco-López, Onofre & Casillas-Rodríguez, F. & Sevilla-Escoboza, R., 2019. "Discrete-time neural synchronization between an Arduino microcontroller and a Compact Development System using multiscroll chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 269-275.
    8. Alex Graves & Greg Wayne & Malcolm Reynolds & Tim Harley & Ivo Danihelka & Agnieszka Grabska-Barwińska & Sergio Gómez Colmenarejo & Edward Grefenstette & Tiago Ramalho & John Agapiou & Adrià Puigdomèn, 2016. "Hybrid computing using a neural network with dynamic external memory," Nature, Nature, vol. 538(7626), pages 471-476, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wang & Zhao, Lingzhi & Shi, Hongjun & Zhao, Donghua & Sun, Yongzheng, 2021. "Realizing generalized outer synchronization of complex dynamical networks with stochastically adaptive coupling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 379-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    2. Tomassini, Marco & Luthi, Leslie, 2007. "Empirical analysis of the evolution of a scientific collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 750-764.
    3. Takao Furukawa & Nobuyuki Shirakawa & Kumi Okuwada, 2011. "Quantitative analysis of collaborative and mobility networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 451-466, June.
    4. Sánchez, Allan G.S. & Posadas–Castillo, C. & Garza–González, E., 2021. "Determining efficiency of small-world algorithms: A comparative approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 687-699.
    5. José Luis Ortega & Isidro F. Aguillo, 2010. "Shaping the European research collaboration in the 6th Framework Programme health thematic area through network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 377-386, October.
    6. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    7. Leo Egghe, 2009. "Performance and its relation with productivity in Lotkaian systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 567-585, November.
    8. Thang N. Dinh & Nam P. Nguyen & Md Abdul Alim & My T. Thai, 2015. "A near-optimal adaptive algorithm for maximizing modularity in dynamic scale-free networks," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 747-767, October.
    9. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    10. Giacomello, Giampiero & Picci, Lucio, 2003. "My scale or your meter? Evaluating methods of measuring the Internet," Information Economics and Policy, Elsevier, vol. 15(3), pages 363-383, September.
    11. Ormerod, Paul & Roach, Andrew P, 2004. "The Medieval inquisition: scale-free networks and the suppression of heresy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 645-652.
    12. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    13. Ann Bostrom & Ragnar E. Löfstedt, 2003. "Communicating Risk: Wireless and Hardwired," Risk Analysis, John Wiley & Sons, vol. 23(2), pages 241-248, April.
    14. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    15. de Oliveira, Thaiane Moreira & de Albuquerque, Sofia & Toth, Janderson Pereira & Bello, Debora Zava, 2018. "International cooperation networks of the BRICS bloc," SocArXiv b6x43, Center for Open Science.
    16. Ruiz-Silva, A. & Gilardi-Velázquez, H.E. & Campos, Eric, 2021. "Emergence of synchronous behavior in a network with chaotic multistable systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Castagna, Alina & Chentouf, Leila & Ernst, Ekkehard, 2017. "Economic vulnerabilities in Italy: A network analysis using similarities in sectoral employment," GLO Discussion Paper Series 50, Global Labor Organization (GLO).
    18. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    19. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Resources Flows Asymmetries in Strict Nash Networks with Partner Heterogeneity," Working Papers 1108, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    20. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:174:y:2020:i:c:p:233-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.