IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v275y2016icp305-316.html
   My bibliography  Save this article

Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors

Author

Listed:
  • Soriano-Sánchez, A.G.
  • Posadas-Castillo, C.
  • Platas-Garza, M.A.
  • Cruz-Hernández, C.
  • López-Gutiérrez, R.M.

Abstract

In this paper synchronization of N-coupled chaotic oscillators with multi-scroll attractors is presented. N chaotic oscillators are coupled in regular and irregular topologies. The generalizations of the Genesio & Tesi and Chua’s chaotic oscillators are used as generators of multi-scroll attractors. An alternative scheme for computing the coupling strength is proposed. Synchronization is achieved through the coupling matrix and by using the resulting alternative values. In general, the range of values obtained with the proposed method is smaller than the one given by Wang & Chen method. The effectiveness of this coupling strength is verified through numerical simulations.

Suggested Citation

  • Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2016. "Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 305-316.
  • Handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:305-316
    DOI: 10.1016/j.amc.2015.11.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315015830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Diaz-Romero, D.A., 2015. "Performance improvement of chaotic encryption via energy and frequency location criteria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 14-27.
    2. Zribi, Mohamed & Smaoui, Nejib & Salim, Haitham, 2009. "Synchronization of the unified chaotic systems using a sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3197-3209.
    3. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    4. Yan, Zhenya & Yu, Pei, 2007. "Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 419-435.
    5. Feng, Yong & Yu, Xinghuo & Sun, Lixia, 2008. "Synchronization of uncertain chaotic systems using a single transmission channel," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 755-762.
    6. Feki, Moez, 2009. "Sliding mode control and synchronization of chaotic systems with parametric uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1390-1400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez, Allan G.S. & Posadas–Castillo, C. & Garza–González, E., 2021. "Determining efficiency of small-world algorithms: A comparative approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 687-699.
    2. A.G., Soriano–Sánchez & C., Posadas–Castillo & M.A., Platas–Garza & A., Arellano–Delgado, 2018. "Synchronization and FPGA realization of complex networks with fractional–order Liu chaotic oscillators," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 250-262.
    3. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    4. Ruiz-Silva, A. & Gilardi-Velázquez, H.E. & Campos, Eric, 2021. "Emergence of synchronous behavior in a network with chaotic multistable systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    6. Sun, Bo & Cao, Yuting & Guo, Zhenyuan & Yan, Zheng & Wen, Shiping, 2020. "Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    7. Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Jinping Liu & Abdullah A. Al-Barakati, 2023. "Fixed-Time Adaptive Chaotic Control for Permanent Magnet Synchronous Motor Subject to Unknown Parameters and Perturbations," Mathematics, MDPI, vol. 11(14), pages 1-14, July.
    5. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Diaz-Romero, D.A., 2015. "Performance improvement of chaotic encryption via energy and frequency location criteria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 14-27.
    6. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    7. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    8. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    9. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    10. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    11. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    12. Yifan Zhang & Tianzeng Li & Zhiming Zhang & Yu Wang, 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes," Mathematics, MDPI, vol. 10(11), pages 1-22, June.
    13. Dongya Li & Xiaoping Zhang & Shuang Wang & Fengxiang You, 2022. "Robust Synchronization of Fractional-Order Chaotic System Subject to Disturbances," Mathematics, MDPI, vol. 10(24), pages 1-15, December.
    14. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    15. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    16. A.G., Soriano–Sánchez & C., Posadas–Castillo & M.A., Platas–Garza & A., Arellano–Delgado, 2018. "Synchronization and FPGA realization of complex networks with fractional–order Liu chaotic oscillators," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 250-262.
    17. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Michal Fečkan & T. Sathiyaraj & JinRong Wang, 2020. "Synchronization of Butterfly Fractional Order Chaotic System," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    19. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2019. "Difference synchronization among three chaotic systems with exponential term and its chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 36-51.
    20. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:305-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.