IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v112y2015icp14-27.html
   My bibliography  Save this article

Performance improvement of chaotic encryption via energy and frequency location criteria

Author

Listed:
  • Soriano-Sánchez, A.G.
  • Posadas-Castillo, C.
  • Platas-Garza, M.A.
  • Diaz-Romero, D.A.

Abstract

Using a multi-scroll oscillator with an adjustable number of scrolls as chaos generator, this paper shows how an adequate control of the chaotic masking signal provides the basis for an improved security in private communication. We base the selection of the masking signal on two criteria related, respectively, to the energy and the spectral location of the signals in the complex synchronization network. The result is a successful encryption, transmission and retrieval of a confidential message in a two-channel communication system with multi-user modality.

Suggested Citation

  • Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Diaz-Romero, D.A., 2015. "Performance improvement of chaotic encryption via energy and frequency location criteria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 14-27.
  • Handle: RePEc:eee:matcom:v:112:y:2015:i:c:p:14-27
    DOI: 10.1016/j.matcom.2015.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415000087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    2. Behnia, S. & Akhshani, A. & Akhavan, A. & Mahmodi, H., 2009. "Applications of tripled chaotic maps in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 505-519.
    3. Boukabou, Abdelkrim & Mekircha, Naim, 2012. "Generalized chaos control and synchronization by nonlinear high-order approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2268-2281.
    4. Wan, Xiaojun & Sun, Jitao, 2011. "Adaptive–impulsive synchronization of chaotic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(8), pages 1609-1617.
    5. Yan, Zhenya & Yu, Pei, 2007. "Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 419-435.
    6. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    7. Zribi, Mohamed & Smaoui, Nejib & Salim, Haitham, 2009. "Synchronization of the unified chaotic systems using a sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3197-3209.
    8. Torres, Lizeth & Besançon, Gildas & Georges, Didier & Verde, Cristina, 2012. "Exponential nonlinear observer for parametric identification and synchronization of chaotic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 836-846.
    9. Luo, Albert C.J. & Min, Fuhong, 2011. "Synchronization dynamics of two different dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 362-380.
    10. Lian, Shiguo, 2009. "Efficient image or video encryption based on spatiotemporal chaos system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2509-2519.
    11. Smaoui, Nejib & Kanso, Ali, 2009. "Cryptography with chaos and shadowing," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2312-2321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prants, Fabiola G. & Rech, Paulo C., 2017. "Complex dynamics of a three-dimensional continuous-time autonomous system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 132-139.
    2. A.G., Soriano–Sánchez & C., Posadas–Castillo & M.A., Platas–Garza & A., Arellano–Delgado, 2018. "Synchronization and FPGA realization of complex networks with fractional–order Liu chaotic oscillators," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 250-262.
    3. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2016. "Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 305-316.
    4. Alghafis, Abdullah & Firdousi, Faiza & Khan, Majid & Batool, Syeda Iram & Amin, Muhammad, 2020. "An efficient image encryption scheme based on chaotic and Deoxyribonucleic acid sequencing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 441-466.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2016. "Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 305-316.
    2. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    3. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    4. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    5. Cui, Kaiyan & Song, Zhanjie & Zhang, Shuo, 2022. "Stability of neutral-type neural network with Lévy noise and mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Senouci, Abdelkader & Boukabou, Abdelkrim, 2014. "Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 62-78.
    7. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    8. Xuan-Bing Yang & Yi-Gang He & Chun-Lai Li, 2018. "Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    9. Li, Tao & Tang, Xiaoling & Qian, Wei & Fei, Shumin, 2019. "Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 449-463.
    10. Njimah, Ouzerou Mouncherou & Ramadoss, Janarthanan & Telem, Adelaide Nicole Kengnou & Kengne, Jacques & Rajagopal, Karthikeyan, 2023. "Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Song, Xian-Hua & Wang, Hui-Qiang & Venegas-Andraca, Salvador E. & Abd El-Latif, Ahmed A., 2020. "Quantum video encryption based on qubit-planes controlled-XOR operations and improved logistic map," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    13. Min, Fuhong & Luo, Albert C.J., 2012. "Periodic and chaotic synchronizations of two distinct dynamical systems under sinusoidal constraints," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 998-1011.
    14. Mahmoud, Gamal M. & Mahmoud, Emad E. & Arafa, Ayman A., 2018. "Synchronization of time delay systems with non-diagonal complex scaling functions," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 86-95.
    15. Arbid, Mahmoud & Teffahi, Abdelkader & Boukabou, Abdelkrim & Bounar, Amel, 2023. "Predictive-based control of complex dynamic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Nguyen, Le Hoa & Hong, Keum-Shik, 2011. "Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 590-603.
    17. Zhang, Yan & Chen, Shihua & Zhou, Hong, 2009. "Synchronizing the noise-perturbed Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2475-2482.
    18. Emad E. Mahmoud & M. Higazy & Turkiah M. Al-Harthi, 2019. "A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Applicatio," Mathematics, MDPI, vol. 7(10), pages 1-26, September.
    19. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Jinping Liu & Abdullah A. Al-Barakati, 2023. "Fixed-Time Adaptive Chaotic Control for Permanent Magnet Synchronous Motor Subject to Unknown Parameters and Perturbations," Mathematics, MDPI, vol. 11(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:112:y:2015:i:c:p:14-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.