IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v82y2019icp457-463.html
   My bibliography  Save this article

Poor-drainage-induced salinization of agricultural lands: Management through structural measures

Author

Listed:
  • Singh, Ajay

Abstract

Convenient and sufficient water supply to crops is a necessity for sustainable food production to the rising total populace. Albeit adequate water supply is important for crop production, the surplus water in the rootzone is hurtful to plant development and yield. Poor drainage and associated salinization represent severe threats to the long-term sustainability of irrigated agriculture in several dry areas. Reducing soil submergence, salinity control, and making new land accessible for agriculture are the three main goals of agricultural drainage. Thus, an effective drainage system not only improves the existing agricultural lands but also brings new areas under cultivation. This paper provides an investigation of different structural and engineering measures adopted for the management of drainage and salinization problems of irrigated lands. The overview of drainage and salinization problems and the requirement of a drainage system are presented. Application and limitations of surface drainage system in agricultural areas and the processes involved in the removal of surplus water through subsurface drainage system are provided. The adaptability and limitations of tile drainage, mole drainage, and vertical drainage in managing the drainage and salinization problems of agricultural lands are also detailed in the paper. Finally, policy issues are discussed and some conclusions are provided.

Suggested Citation

  • Singh, Ajay, 2019. "Poor-drainage-induced salinization of agricultural lands: Management through structural measures," Land Use Policy, Elsevier, vol. 82(C), pages 457-463.
  • Handle: RePEc:eee:lauspo:v:82:y:2019:i:c:p:457-463
    DOI: 10.1016/j.landusepol.2018.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837718306677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2018.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Ajay, 2018. "Assessment of different strategies for managing the water resources problems of irrigated agriculture," Agricultural Water Management, Elsevier, vol. 208(C), pages 187-192.
    2. Gordon, Line J. & Finlayson, C. Max & Falkenmark, Malin, 2010. "Managing water in agriculture for food production and other ecosystem services," Agricultural Water Management, Elsevier, vol. 97(4), pages 512-519, April.
    3. Manjunatha, M. V. & Oosterbaan, R. J. & Gupta, S. K. & Rajkumar, H. & Jansen, H., 2004. "Performance of subsurface drains for reclaiming waterlogged saline lands under rolling topography in Tungabhadra irrigation project in India," Agricultural Water Management, Elsevier, vol. 69(1), pages 69-82, September.
    4. Consoli, S. & Vanella, D., 2014. "Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model," Agricultural Water Management, Elsevier, vol. 143(C), pages 71-81.
    5. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    6. Sanchez Valero, Caroline & Madramootoo, Chandra A. & Stampfli, Nicolas, 2007. "Water table management impacts on phosphorus loads in tile drainage," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 71-80, April.
    7. Goss, M. J. & Harris, G. L. & Howse, K. R., 1983. "Functioning of mole drains in a clay soil," Agricultural Water Management, Elsevier, vol. 6(1), pages 27-30, March.
    8. Bahceci, Idris & Dinc, Nazmi & Tari, Ali Fuat & Agar, Ahmet I. & Sonmez, Bulent, 2006. "Water and salt balance studies, using SaltMod, to improve subsurface drainage design in the Konya-Cumra Plain, Turkey," Agricultural Water Management, Elsevier, vol. 85(3), pages 261-271, October.
    9. Filipović, Vilim & Mallmann, Fábio Joel Kochem & Coquet, Yves & Šimůnek, Jirka, 2014. "Numerical simulation of water flow in tile and mole drainage systems," Agricultural Water Management, Elsevier, vol. 146(C), pages 105-114.
    10. Ritzema, H.P. & Nijland, H.J. & Croon, F.W., 2006. "Subsurface drainage practices: From manual installation to large-scale implementation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 60-71, November.
    11. Datta, K. K. & de Jong, C. & Singh, O. P., 2000. "Reclaiming salt-affected land through drainage in Haryana, India: a financial analysis," Agricultural Water Management, Elsevier, vol. 46(1), pages 55-71, November.
    12. Ritzema, H.P., 2016. "Drain for Gain: Managing salinity in irrigated lands—A review," Agricultural Water Management, Elsevier, vol. 176(C), pages 18-28.
    13. Ritzema, H.P. & Satyanarayana, T.V. & Raman, S. & Boonstra, J., 2008. "Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers' fields," Agricultural Water Management, Elsevier, vol. 95(3), pages 179-189, March.
    14. Youngs, E. G., 1985. "An analysis of the effect of the vertical fissuring in mole-drained soils on drain performances," Agricultural Water Management, Elsevier, vol. 9(4), pages 301-311, March.
    15. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    16. Tuohy, P. & Humphreys, J. & Holden, N.M. & Fenton, O., 2016. "Runoff and subsurface drain response from mole and gravel mole drainage across episodic rainfall events," Agricultural Water Management, Elsevier, vol. 169(C), pages 129-139.
    17. Ibrakhimov, Mirzakhayot & Martius, Christopher & Lamers, J.P.A. & Tischbein, Bernhard, 2011. "The dynamics of groundwater table and salinity over 17 years in Khorezm," Agricultural Water Management, Elsevier, vol. 101(1), pages 52-61.
    18. Qureshi, A.S. & McCornick, P.G. & Qadir, M. & Aslam, Z., 2008. "Managing salinity and waterlogging in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 95(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youngseok Song & Moojong Park, 2021. "A Study on the Development of Reduction Facilities’ Management Standards for Agricultural Drainage for Disaster Reduction," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    2. Yasir Abduljaleel & Ahmed Awad & Nadhir Al-Ansari & Ali Salem & Abdelazim Negm & Mohamed Elsayed Gabr, 2023. "Assessment of Subsurface Drainage Strategies Using DRAINMOD Model for Sustainable Agriculture: A Review," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Rui Zhang & Shahid Hussain & Shuo Yang & Yulin Yang & Linlin Shi & Yinglong Chen & Huanhe Wei & Ke Xu & Qigen Dai, 2023. "Research on Salt Stress in Rice from 2000 to 2021: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    2. Muhammad Ali Imran & Jinlan Xu & Muhammad Sultan & Redmond R. Shamshiri & Naveed Ahmed & Qaiser Javed & Hafiz Muhammad Asfahan & Yasir Latif & Muhammad Usman & Riaz Ahmad, 2021. "Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    3. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    4. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    5. Ritzema, Henk & Abdel-Dayem, Safwat & El-Atfy, Hussein & Nasralla, Magdy Rashad & Shaheen, Hanny Saad, 2023. "Challenges in modernizing the subsurface drainage systems in Egypt," Agricultural Water Management, Elsevier, vol. 288(C).
    6. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.
    7. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    9. Deuss, Kirstin Ella & Almond, Peter C. & Carrick, Sam & Kees, Lawrence John, 2023. "Identification, mapping, and characterisation of a mature artificial mole channel network using ground-penetrating radar," Agricultural Water Management, Elsevier, vol. 288(C).
    10. S. A. Prathapar & N. Rajmohan & B. R. Sharma & P. K. Aggarwal, 2018. "Vertical drains to minimize duration of seasonal waterlogging in Eastern Ganges Basin flood plains: a field experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 1-17, May.
    11. Salo, Heidi & Mellin, Ilkka & Sikkilä, Markus & Nurminen, Jyrki & Äijö, Helena & Paasonen-Kivekäs, Maija & Virtanen, Seija & Koivusalo, Harri, 2019. "Performance of subsurface drainage implemented with trencher and trenchless machineries," Agricultural Water Management, Elsevier, vol. 213(C), pages 957-967.
    12. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    13. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Tuohy, P. & O’ Loughlin, J. & Peyton, D. & Fenton, O., 2018. "The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate," Agricultural Water Management, Elsevier, vol. 210(C), pages 96-107.
    15. Ritzema, H.P., 2016. "Drain for Gain: Managing salinity in irrigated lands—A review," Agricultural Water Management, Elsevier, vol. 176(C), pages 18-28.
    16. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    17. Li Zhao & Tong Heng & Lili Yang & Xuan Xu & Yue Feng, 2021. "Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    18. Ren, Xiaolei & Wang, Shaoli & Yang, Peiling & Tao, Yuan, 2023. "Experimental and modeling evaluation of siphon-type subsurface drainage performance in flooding and waterlogging removal," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    20. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:82:y:2019:i:c:p:457-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.