IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v78y2022ics0301420722003506.html
   My bibliography  Save this article

Medium- to long-term nickel price forecasting using LSTM and GRU networks

Author

Listed:
  • Ozdemir, Ali Can
  • Buluş, Kurtuluş
  • Zor, Kasım

Abstract

Recently, nickel is a critical metal for manufacturing stainless steel, rechargeable electric vehicle batteries, and alloys utilized in the state-of-the-art technologies. The use of more environmentally friendly electric vehicles has become widespread and brought tackling climate change to forefront, especially for reducing greenhouse gas emissions. Therefore, the demand for rechargeable batteries that power electric vehicles and the need for the nickel in the production of these batteries will increase as well. In addition to those, nickel prices significantly impact mine investment decisions, mine planning, economic development of nickel companies, and countries that depend on nickel resources. However, there is uncertainty about how the nickel price will trend in the future, and the solution to this problem attracts the attention of researchers. For forecasting nickel price, this paper proposes recurrent neural networks-based on long short-term memory (LSTM) and gated recurrent unit (GRU) networks, classified as deep learning algorithms. Mean absolute percentage error (MAPE) was used as the performance measure to compute the accuracy of the proposed techniques. As a result, it has been determined that the LSTM and GRU networks are very useful and successful in forecasting the nickel price variations owing to having average MAPE values of 7.060% and 6.986%, respectively. Furthermore, it has been observed that GRU networks surpassed the LSTM networks by 33% in terms of average computational time.

Suggested Citation

  • Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:jrpoli:v:78:y:2022:i:c:s0301420722003506
    DOI: 10.1016/j.resourpol.2022.102906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722003506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
    2. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    3. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    4. Abdel Sabour, S. A., 2002. "Mine size optimization using marginal analysis," Resources Policy, Elsevier, vol. 28(3-4), pages 145-151.
    5. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Author Correction: Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(8), pages 699-699, August.
    6. Bilin Shao & Maolin Li & Yu Zhao & Genqing Bian, 2019. "Nickel Price Forecast Based on the LSTM Neural Network Optimized by the Improved PSO Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, September.
    7. He, Kaijian & Lu, Xingjing & Zou, Yingchao & Keung Lai, Kin, 2015. "Forecasting metal prices with a curvelet based multiscale methodology," Resources Policy, Elsevier, vol. 45(C), pages 144-150.
    8. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    9. Schmidt, Tobias & Buchert, Matthias & Schebek, Liselotte, 2016. "Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 107-122.
    10. Panas, E., 2001. "Long memory and chaotic models of prices on the London Metal Exchange," Resources Policy, Elsevier, vol. 27(4), pages 235-246, December.
    11. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    12. Bhatia, Vaneet & Das, Debojyoti & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Hasim, Haslifah M., 2018. "Do precious metal spot prices influence each other? Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 55(C), pages 244-252.
    13. Fernandez, Viviana, 2018. "Price and income elasticity of demand for mineral commodities," Resources Policy, Elsevier, vol. 59(C), pages 160-183.
    14. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    15. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2017. "Price forecasting in the precious metal market: A multivariate EMD denoising approach," Resources Policy, Elsevier, vol. 54(C), pages 9-24.
    16. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(7), pages 589-599, July.
    17. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    18. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2022. "Gold price forecasting using multivariate stochastic model," Resources Policy, Elsevier, vol. 76(C).
    19. Eckelman, Matthew J., 2010. "Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry," Resources, Conservation & Recycling, Elsevier, vol. 54(4), pages 256-266.
    20. Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
    21. Changqing Cheng & Akkarapol Sa-Ngasoongsong & Omer Beyca & Trung Le & Hui Yang & Zhenyu (James) Kong & Satish T.S. Bukkapatnam, 2015. "Time series forecasting for nonlinear and non-stationary processes: a review and comparative study," IISE Transactions, Taylor & Francis Journals, vol. 47(10), pages 1053-1071, October.
    22. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
    23. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    24. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    25. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    26. A. Desgagné & P. Lafaye de Micheaux, 2018. "A powerful and interpretable alternative to the Jarque–Bera test of normality based on 2nd-power skewness and kurtosis, using the Rao's score test on the APD family," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2307-2327, October.
    27. Fu, Rao & Jin, Gui & Chen, Jinyue & Ye, Yuyao, 2021. "The effects of poverty alleviation investment on carbon emissions in China based on the multiregional input–output model," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    28. Hatayama, Hiroki & Tahara, Kiyotaka, 2018. "Adopting an objective approach to criticality assessment: Learning from the past," Resources Policy, Elsevier, vol. 55(C), pages 96-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    2. László Vancsura & Tibor Tatay & Tibor Bareith, 2023. "Evaluating the Effectiveness of Modern Forecasting Models in Predicting Commodity Futures Prices in Volatile Economic Times," Risks, MDPI, vol. 11(2), pages 1-16, January.
    3. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    4. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    2. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    3. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    4. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    5. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    6. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    7. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    8. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    9. Guo, Honggang & Wang, Jianzhou & Li, Zhiwu & Lu, Haiyan & Zhang, Linyue, 2022. "A non-ferrous metal price ensemble prediction system based on innovative combined kernel extreme learning machine and chaos theory," Resources Policy, Elsevier, vol. 79(C).
    10. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    11. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    12. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    13. Sroka Łukasz, 2022. "Applying Block Bootstrap Methods in Silver Prices Forecasting," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 15-29, June.
    14. Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
    15. Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
    16. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    17. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    18. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    19. Tapia Cortez, Carlos A. & Hitch, Michael & Sammut, Claude & Coulton, Jeff & Shishko, Robert & Saydam, Serkan, 2018. "Determining the embedding parameters governing long-term dynamics of copper prices," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 186-197.
    20. Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:78:y:2022:i:c:s0301420722003506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.